Prof. Dr. Maria Dienerowitz

Teaching

  • Introduction to Laser Technology
    (winter semester)
  • Laser Applications in Quantum Optics
    (summer semester)
  • Vacuum Technology
    (winter semester)

  • Laser Technology
    (winter semester)
  • Laser Metrology I and II
    (winter semester and summer semester)
  • Nonlinear Optics
    (summer semester)
  • Laser-based Imaging in Microscopy
    (winter semester)

 

Lecture notes and other materials for the courses
can be found on the corresponding Moodle course page.

News

Join the Team!

PostDoc position DFG Project TOOLS (5 years)

 


Team

Research Assistant

Project BioLoc

Research Assistant TOOLS

Lab Technician

Scientific Assistance

Project Opto

Scientific Assistance

Scientific Assistance

Project BioLoc

Current research projects

in cooperation with the German Optical Museum

sponsored by the Carl Zeiss Foundation

https://www.carl-zeiss-stiftung.de/themen-projekte/uebersicht-projekte/detail/opto-vermessung-historischer-brillenglaeser

Tailored Optics for Life Sciences Engineering: Multifunctional, Multiscale, Monolithic Optics for Biomedical Manipulation and Diagnostics (TOOLS)

funded by the DFG

Projects Didactics / Science Communication

In this project, a laboratory experiment on the Balmer series is developed as part of an introductory course in laser technology. Students will independently set up the experiment according to the "3P concept" of the Paderborn Physics Practical Course to investigate the spectrum of a hydrogen lamp. This method not only promotes an understanding of basic quantum physics, but also independent thinking and problem-solving skills to prepare them for future challenges in their engineering careers.

 

Publications

Timo Mappes and Maria Dienerowitz
Abbe's resolution.
Physics Journal 23 (1), 25-30 (2024).

H. Sielaff, J. A. L. Howard, S. D. Quinn, F. Dienerowitz, M. C. Leake, M. Dienerowitz
Single-molecule FRET dynamics of molecular motors in an anti-Brownian electrokinetic trap
Proceedings of SPIE, Frontiers in Biophotonics and Imaging II, 1233306 (2023)
https://doi.org/10.1117/12.2657888

H. Sielaff, F. Dienerowitz and M. Dienerowitz
Single-molecule FRET combined with electrokinetic trapping reveals real-time enzyme kinetics of individual F-ATP synthases
Nanoscale 14:2327 (2022).
https://doi.org/10.1039/D1NR05754E

M. Dienerowitz, J. A. L. Howard, S. D. Quinn, F. Dienerowitz, and M. C. Leake
Single-molecule FRET dynamics of molecular motors in an ABEL Trap
Methods 193:96 (2021).
https://doi.org/10.1016/j.ymeth.2021.01.012

C. Riesenberg, C. A. I. Valdez, A. Becker, M. Dienerowitz, A. Heisterkamp, A. Ngezahayo, and M. L. Torres-Mapa
Probing Ligand-Receptor Interaction in Living Cells Using Force Measurements With Optical Tweezers
Frontiers in Bioengineering and Biotechnology 8:598459 (2020).
https://doi.org/10.3389/fbioe.2020.598459

M. Dienerowitz, F. Dienerowitz, and M. Börsch
Measuring nanoparticle diffusion in an ABELtrap
'Emerging Leaders' focus edition (invitation only)
Journal of Optics 20:034006 (2018).
https://doi.org/10.1088/2040-8986/aaa6fc

M. Dienerowitz, T. Heitkamp, T. Gottschall, J. Limpert, and M. Börsch
Confining Brownian motion of single nanoparticles in an ABELtrap
Proceedings of SPIE, Complex Light and Optical Forces XI, 1012017 (2017)
https://doi.org/10.1117/12.2250550

M. Dienerowitz, M. Ilchenko, B. Su, G. Deckers-Hebestreit, G. Mayer, T. Henkel, T. Heitkamp, and M. Börsch
Optimized green fluorescent protein fused to FoF1-ATP synthase for single-molecule FRET using a fast anti-Brownian electrokinetic trap
Proceedings of SPIE, Single Molecule Spectroscopy and Superresolution Imaging IX, 971402 (2016)
https://doi.org/10.1117/12.2209592

M. Dienerowitz, L. Cowan, G. Gibson, R. Hay, M. Padgett and V. Phoenix
Discrete motile response of individual bacteria upon cell-cell approach controls aggregation
Current Microbiology 69:669 (2014).
https://doi.org/10.1007/s00284-014-0641-5

M. Dienerowitz, M. Lee, G. Gibson and M. Padgett
Measuring nanoparticle flow with the image structure function
Lab on a Chip 13:2359 (2013).
https://doi.org/10.1039/C3LC00028A

G. M. Gibson, M. Dienerowitz, P. A. Kelleher, A. R. Harvey and M. J. Padgett
A multi-object spectral imaging instrument
Journal of Optics 15:085302 (2013).
https://doi.org/10.1088/2040-8978/15/8/085302

G. Gibson, R.W. Bowman, A. Linnenberger, M. Dienerowitz, D.B. Phillips, D.M. Carberry, M.J. Miles and M.J. Padgett
A compact holographic optical tweezers instrument
Review of Scientific Instruments 83:113107 (2012).
https://doi.org/10.1063/1.4768303

M. Dienerowitz, G. Gibson, F. Dienerowitz and M. Padgett
Expanding the toolbox for nanoparticle trapping and spectroscopy with holographic optical tweezers
Journal of Optics 14:045003 (2012).
https://doi.org/10.1088/2040-8978/14/4/045003

M. Dienerowitz, G. Gibson, R Bowman and M. Padgett
Holographic aberration correction: optimizing the stiffness of an optical trap deep in the sample
Optics Express 19:24589 (2011).
https://doi.org/10.1364/OE.19.024589

M. Dienerowitz, G. Gibson, R. Bowman and M. Padgett
Holographic tweezers: a platform for plasmonics
Proceedings of SPIE, Optical Trapping and Optical Micromanipulation VIII, 8097 (2011)
https://doi.org/10.1117/12.894695

M. Dienerowitz, M. Mazilu, P.J. Reece, T.F. Krauss, and K. Dholakia.
Optical vortex trap for resonant confinement of metal nanoparticles
Optics Express 16:4991 (2008).
https://doi.org/10.1364/OE.16.004991

M. Dienerowitz and K. Dholakia. Transfer of Orbital Angular Momentum from an Optical Vortex Beam to a Nanoparticle, Topologica, 2:008 (2009).
https://doi.org/10.3731/topologica.2.008

M. Dienerowitz, M. Mazilu, and K. Dholakia. Optical manipulation of nanoparticles: a review
Journal of Nanophotonics 2:021875 (2008).
https://doi.org/10.1117/1.2992045

Single molecule trap

The ABEL trap (Anti-Brownian ELectrokinetic trap) traps individual molecules in free solution without surface binding. By compensating Brownian motion with electric fields, this technique allows for a long observation time of the molecules. Single-molecule FRET provides detailed insights into molecular dynamics and interactions that are crucial for understanding fundamental biological processes.

  • smFRET (single molecule Förster resonance energy transfer) for observing conformational changes of individual molecules
  • Statistical analysis of molecular dynamics based on kinetics of single molecular motors
  • Determination of the hydrodynamic radius of molecules and nanoparticles

H. Sielaff, F. Dienerowitz and M. Dienerowitz
Single-molecule FRET combined with electrokinetic trapping reveals real-time enzyme kinetics of individual F-ATP synthases
Nanoscale 14:2327 (2022).
https://doi.org/10.1039/D1NR05754E

M. Dienerowitz, J. A. L. Howard, S. D. Quinn, F. Dienerowitz, and M. C. Leake
Single-molecule FRET dynamics of molecular motors in an ABEL Trap
Methods 193:96 (2021).
https://doi.org/10.1016/j.ymeth.2021.01.012


Optical tweezers

Optical tweezers hold the smallest objects with a laser beam and can move them freely in all
directions. This non-contact gripping is particularly helpful for grasping micrometer-sized
objects or organisms and positioning them precisely.

The smallest forces in the pN range can be measured with optical tweezers or traps. This is used to determine the step sizes of molecular motors or forces between individual bacteria. Holographic optical tweezers are often used here, with which several optical traps can be controlled digitally at the same time (see image).

  • Force measurement between individual bacteria during biofilm formation
  • Optical trapping of metallic nanoparticles
  • attractive and repulsive optical forces near the plasmon resonance of nanoparticles

C. Riesenberg, C. A. I. Valdez, A. Becker, M. Dienerowitz, A. Heisterkamp, A. Ngezahayo, and M. L. Torres-Mapa
Probing Ligand-Receptor Interaction in Living Cells Using Force Measurements With Optical Tweezers
Frontiers in Bioengineering and Biotechnology 8:598459 (2020).
https://doi.org/10.3389/fbioe.2020.598459

M. Dienerowitz, L. Cowan, G. Gibson, R. Hay, M. Padgett and V. Phoenix
Discrete motile response of individual bacteria upon cell-cell approach controls aggregation
Current Microbiology 69:669 (2014).
https://doi.org/10.1007/s00284-014-0641-5