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Abstract
Various types of dynamical systems, such as ordinary differen-

tial equations (ODEs) or partial differential equations (PDEs), are
widely applied not only in chemistry but also in many scientific dis-
ciplines to model the dynamics arising from interactions described
by reactions between molecules, individuals, or species. This study
provides an overview of how Chemical Organization Theory (COT)
can be used to analyze such systems by identifying all potentially
persistent species solely from the underlying reaction network, with-
out the need for simulations or even knowledge of reaction constants
or kinetic laws.  Two minimalist examples with only three resp. four
species are used to introduce all fundamental definitions including
a new, naturally arising concept of persistence, and to illustrate
the fore-mentioned technique without mathematical details such as
proofs. Thereby, COT is shown to provide measures to analyze,
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compare, and construct very complex systems on an abstract level
and thus to complement other powerful techniques for the analy-
sis of complex systems such as deficiency, RAF theory, elementary
modes, graph theory, Lyapunov functions, and bifurcation theory.

1 Introduction

Reaction networks are used in various areas to describe the possible interac-
tions of species [1–3]. As a result, reaction network analysis has expanded
into a broad field that includes, among others, deficiency [4, 5], RAF the-
ory [3], Chemical Organization Theory (COT) [6], subnetwork analysis [7],
elementary modes [8], graph theory [9,10] or Lyapunov functions [11] play
an important role. The chemical organization theory (COT) was shown
to play a meaningful role in the persistence of species in dynamical sys-
tems basing upon reactions in a sequence of three previous works [12–14].
The concept of the chemical organization was applied successfully in vari-
ous constructive systems like chemical computing [15], social systems [16],
virus dynamics [17–20] or checking systems biology models for inconsis-
tencies [21] as well as in cell cycle control [22–24]. For the time being, the
theory was completed in [14] and here it is presented in a brief and clear
manner that omits mathematical details.

The stoichiometric matrix of a reaction network, together with reaction
constants and a kinetic law, builds up the connection between the static
reaction network and a dynamical system describing the dynamics of the
species concentrations in time.  When using continuous values for the con-
centrations, then the concentration of each species can be described by an
ordinary differential equation (ODE). If a spatial dimension is incorpo-
rated then partial derivatives appear and the ODEs get partial differential
equations (PDEs). Such a system of PDEs is called a reaction-diffusion
system (RDS) if it includes diffusion terms. To conclude the list of con-
tinuous dynamical systems, patch-like systems are to be mentioned, that
is, systems that are distributed to different patches with defined intercon-
nections allowing for diffusion, convection, etc. This work focuses on RDS
such that systems of ODEs and patch-like systems appear as special cases.
It will become clear that the techniques can be easily transferred to other
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types of systems as well such as discrete, stochastic systems as we have
indicated in [25,26].

Persistence is a topic concerning all types of dynamical systems. There
are different types of persistence named with many different terms in var-
ious fields like ecology, chemistry, and biology. First, one has to distin-
guish between the different model types Including, discrete and contin-
uous models, ODEs and PDEs-based models, deterministic or stochastic
models, models having spatial properties or not, etc. As for the afore-
mentioned types of models, for RDS there are different terms used with
regard to persistence, such as permanence [27–30], coexistence [30,31], ex-
tinction [31, 32], strong persistence [32], uniform persistence [31] etc. For
an overview of these concepts, we refer the reader to [29,32]. Concepts of
persistence may vary with regard to whether a single species or a whole
system of species is considered, whether a single solution or all possible so-
lutions of a dynamical system are considered or with regard to the degree
of persistence, such as, strong and weak persistence. In this work, a new
concept of persistence is defined as capturing all possibly persistent sub-
sets of species of a dynamical system with an underlying reaction network
and relating them to each other. Thus, previous concepts are extended
and refined and fixed-point analyses and bifurcation theory as techniques
to analyze complex systems are complemented on a more abstract level.
Figure 1 gives an overview of how this works and links different reaction
network analyses and dynamical systems.

The paper is structured as follows: Firstly, we give some preliminar-
ies on reaction networks and COT as well as the aforementioned different
types of reaction-based dynamical systems. Furthermore, Theorem 1, the
starting point of this work, is explained. The Preliminaries section is con-
cluded by some remarks about persistence. In the Results, a new concept
of persistence is introduced. Subsequently, distributed organizations
(DOs) are defined as a generalization of organizations, which fits to the
new concept of persistence, in that in connection with DOs the main result
of this work, Theorem 2, holds. In the end, a conclusion and outlook on
further research are given.
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Figure 1. Overview of the topic of this paper illustrated for example
reaction network 1 introduced in the Preliminaries. From
left to right: From a reaction network, a dynamical system
is constructed. Simulations (or solutions) of the dynami-
cal system exhibit attractors with certain sets of persistent
species in the long-run. The main result of this work (Theo-
rem 2) states that these sets of persistent species are always
so-called distributed organizations (DOs), which can be com-
puted (without knowing the kinetics and reaction constants
of the dynamical system) solely from the reaction network
and form a lattice.

2 Preliminaries

2.1 Reaction networks

The example I is used to introduce the basic terms about reaction net-
works and Chemical Organization Theory (COT) It consists the set S =

{s1, s2, s3} of the following n = 3 species

s1 = substrate,

s2 = first competitor,

s3 = second competitor,
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which interact according to the set R = {r1, . . . , r9} of m = 4 reactions

r1 : s2
k1−→ s1 + s2 production of substrate by s2,

r2 : 2s1 + s3
k2−→ s3 consumption of substrate by s3,

r3 : s2 + s3
k3−→ ∅ mutual destruction of competitiors,

r4 : s1
k4−→ ∅ outflow of substrate. (1)

Together, we call the set of species and the set of reactions a reaction net-
work. The support supp(r) of a reaction r ∈ R is the subset of species on
the left-hand side of its reaction rule, for example, supp(r2) = {s1, s3}. The
products prod(r) of a reaction r is the subset of species on the right-hand
side of its reaction rule, for example, prod(r2) = {s3}. The stoichiometric
matrix of the reaction network is

N =

1 −2 0 −1

0 0 −1 0

0 0 −1 0

 ∈ Z3×4, (2)

which contains one column of integers for each reaction which describes
the changes to the number of species caused by this reaction.

2.2 Organizations

An organization O is defined to be a subset of species with the following
two properties:

1. O is closed, that is, no species can be produced by the reactions
which can operate on O that are not already contained in O, or
shortly, for every reaction r ∈ R holds:

supp(r) j O ⇒ prod(r) j O, (3)

and

2. O is self-maintaining, that is, there is an equilibrium such that every
species that is reduced by a reaction is restored by another reaction,
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or more precisely, there is a flux vector v ∈ Rm
≥0 for O with

Nv ≥ 0 (4)

and for all reactions r ∈ R holds

vr > 0 ⇔ supp(r) j O. (5)

The set of organizations of a reaction network can be arranged in a so-called
Hasse diagram of organizations. Thereby, each organization is represented
by a node, which is positioned the higher in the diagram the more species
it contains. Two organizations are linked with each other via a line if
and only if one organization is a proper subset of the other. In Figure 2
the Hasse diagram of organizations of the Example I reaction network is
shown.

s1s2

s3

∅

Figure 2. Hasse diagram of organizations of Example I. All organiza-
tions except for {s1, s2} are non-reactive, that is, their fluxes
indicating self-maintenance are all the null vector in R4. A
flux vector v with Nv ≥ 0 for {s1, s2} is (1, 0, 0, 1)T . Since
s2 and s3 can not survive together there is no organization
containing both of them.

2.3 Reaction-based dynamical systems

The theory presented in this work can be applied to various types of dy-
namical systems. Three of them are presented in what follows. The term
”reaction-based dynamical system” means that the reactional part of each
system can be written in the form ċ = Nv(t) + . . . with the species con-
centration vector c, the stoichiometric matrix N , a flux vector v(t) and
the dots representing optional terms for diffusion, for example. Each entry
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vj(t) = vj(c1(t), . . . , cn(t)) ≥ 0 for j ∈ {1, . . . ,m} of v(t) corresponds to
exactly one reaction rj such that vj(t) = 0 if and only if ci(t) = 0 for at
least one species si ∈ supp(rj). This represents the logical fact, that a
reaction can only be active and thus influence the concentrations of some
species if and only if all the species of the reactions’ support have strictly
positive concentrations.

2.3.1 Ordinary differential equations (ODEs)

First, a system of ODEs based upon the reaction network of Example
I is constructed. The species concentrations are considered to be time-
dependent real-valued functions ci = ci(t), i = 1, 2, 3, and their derivations
ċi by time are defined by

ċ = N · v(c) = N · v(c(t)) = N · v(t) (6)

with the flux vector function v(t) chosen according to mass-action kinetics,
that is,

v(t) = (k1c2(t), k2c
2
1(t)c3(t), k3c2(t)c3(t), k4c1(t))

T , (7)

where k1 to k4 are strictly positive real numbers, the so-called reaction
constants. Figure 3 shows the resulting system of ODEs together with
the species concentration courses of the three simulations Ia, Ib and Ic
exhibiting different fixed points in the long-run.

2.3.2 Partial differential equations (PDEs)
and Reaction-diffusion systems (RDS)

If a spatial variable x ∈ Ω from a domain Ω is added to the species concen-
trations ci(x, t), i = 1, 2, 3, then the derivation by time becomes a partial
derivation and the differential equations turn to partial differential equa-
tions (PDEs). And if at least some of the differential equations contain
a summand representing a diffusion term, that is, containing the second
derivation by x, then the PDEs become a so-called RDS. Figure 4 shows
PDEs based upon the reaction network of Example 1 plus the example
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ċ1 = k1c2(t)− k2c
2
1(t)c3(t)− k4c1(t)

ċ2 = − k3c2(t)c3(t)

ċ3 = − k3c2(t)c3(t)

(a) ODEs based upon Example 1 (b) ICs: c1(0) = c2(0) = c3(0) = 1.

(c) ICs: c1(0) = 1, c2(0) = 2, c3(0) = 3. (d) ICs: c1(0) = 3, c2(0) = 2, c3(0) = 1.

Figure 3. (a) ODEs based upon the reaction network of Example 1 to-
gether with three example simulations performed with Mat-
lab R2020a function ”ode15s” (see subfigures (b), (c) and
(d)) each with reaction constants k1 = . . . k4 = 1 but with
different initial conditions (ICs) and thus approaching dif-
ferent fixed points with different species persisting in the
long-run.

simulation Id for which only the species s1 diffuses and boundary condi-
tions are homogeneous Neumann.

2.3.3 A patch-like system

Now, a patch-like system is presented as the last type of dynamical system
that bases upon a reaction network such as the one from Example 1. Let
the patch-like system considered here consist of two patches: L (left) and
R (right), so to speak a discrete, two-element domain Ω = {L,R}. On each
of the patches, one of two equally structured ODE systems describes the
dynamics of the species concentrations and there is a coupling convection
term for the species s1 between the two patches, which is proportional to
the difference between the concentrations of s1 in patch L resp. patch R.
Figure 5 contains the associated ODEs (with cij = ci(j, t) for i = 1, 2, 3

and j = L,R) as well as the results of the example simulation Ie, which is
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∂c1
∂t

= k1c2 − k2c
2
1c3

− k4c1 + d1
∂2c1
∂x2

∂c2
∂t

=
∂c3
∂t

= − k3c2c3

(a) PDEs based upon Example 1 (b) Concentration c1(x, t)

(c) Concentrations c2(x, t) (for x < 0) and
c3(x, t) (for x ≥ 0)) (d) Concentrations at equilibrium state

Figure 4. (a) PDEs based upon the reaction network of Example 1
together with an example simulation (see subfigures (b), (c)
and (d)) performed with Matlab R2020a function ”pdepe”
with reaction constants k1 = . . . k4 = 1, homogeneous Neu-
mann boundary conditions and only species s1 diffusing.
Whereas s1 and s2 exist in disjoint areas of the domain and
remain constant over time s1 is produced by s1 via the re-
action r1 in the beginning and then diffuses to the right to
settle the whole domain.

structurally very similar to the simulation Id.

2.4 Organizations and Fixed points of ODEs

In [6], Theorem 1, a result about the relation of fixed points of ODE
systems and organizations was proven.
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ċ1L = k1c1L − k2c
2
1Lc3L

− k4c1L − (c1L − c1R)

ċ2L = − k3c2Lc3L

ċ3L = − k3c2Lc3L

(a) ODEs for the left patch

ċ1R = k1c2R − k2c
2
1Rc3R

− k4c1R + (c1L − c1R)

ċ2R = − k3c2Rc3R

ċ3R = − k3c2Rc3R

(b) ODEs for the right patch

(c) ICs: c1(L, 0) = c3(L, 0) = 1, c2(L, 0) = 2 (d) ICs: c1(R, 0) = c2(R, 0) = 1, c3(R, 0) = 3

Figure 5. Patch-like system with two patches L and R each or which is
ruled by ODEs based upon Example 1 and a convection term
(c1L − c1R) of the species s1 between the two patches. The
example simulation Ie was performed with Matlab R2020a
function ”ode15s” with reaction constants k1 = . . . k4 = 1.
Similar to the RDS example simulation Id (see Figure 4), in
the left patch, s1 and s2 persist whereas in the right patch,
s1 and s3 persist.

Theorem 1 (The species present in a fixed point are an organization).
Let c? be a fixed point of an ODE system of the form

ċ = Nv(c), (8)

that is,

Nv(c?) = Nv? = 0 (9)

and N be the stoichiometric matrix of a reaction network and v(c) is a
non-negative flux-vector function, for which the entry vj(c) equals zero if
and only if ci = 0 for at least one species si ∈ supp(rj). Then, the set

O? = {si ∈ S : c?i > 0} (10)
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is an organization.
Note, that to c? belongs a flux vector v? ∈ R with its strictly posi-

tive elements designating the active reactions of that fixed point. Roughly
speaking, the set of species present in a fixed point is an organization.

Table 1 illustrates Theorem 1 by relating the simulation examples Ia, Ib
and Ic to the organizations corresponding to the fixed points approached.
Nevertheless, the RDS simulation example Id has shown that Theorem 1

reaction
network simulation dynamical

system type
approached
organization

example I

Ia ODEs ∅
Ib ODEs {s3}
Ic ODEs {s1s2}
Id PDEs (RDS) no organization
Ie patch-like no organization

Table 1. Overview of the simulation examples based upon the reac-
tion network Example 1 and the organizations that are ap-
proached, if any. When comparing this table to Table 2 below
it will become clear how the main result of this work (Theo-
rem 2) generalizes Theorem 1.

does not necessarily hold for other types of dynamical systems since in
the equilibrium point of simulation Id all species s2, s2 and s3 are present
but the set {s1, s2, s3} is not an organization of the underlying reaction
network Example 1. The main topic of this work is a generalization of
Theorem 1 to all types of reaction-based dynamical systems mentioned
above. This includes understanding the persistence of species also in
more complex types of long-term behavior such as periodicity, chaos, and
heteroclinic orbits. This is the topic of the first subsection of the Results.

2.5 Persistence

One could say that a species persists if its concentration does not ap-
proach zero as time goes to infinity. But the fact, that there can be found
many different definitions of persistence (or permanence) in literature (for
example, in [29,32]) indicates that the situation is more complex.

The example ODE simulations Ia to Ic from above all approach a static
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equilibrium, that is, a fixed point c? with ċ? = 0. This represents the most
simple type of dynamical behavior with regard to persistence because in
this case a species si can be called persistent if and only if its concentration
holds

c?i = lim
t→∞

ci(t) > 0. (11)

For RDS (e.g., simulation Id) and patch-like systems (e.g., simulation Ie) a
further integral about the domain Ω can be added as follows. For a RDS,
a species si persists if and only if

lim
t→∞

∫
x∈Ω

ci(x, t) > 0 (12)

and for patch-like systems, a species si persists if and only if

lim
t→∞

∑
x∈Ω

ci(x, t) > 0. (13)

Now, Example II is introduced together with an ODE system which
illustrates that persistence gets more ambiguous if non-static behavior ap-
pears in the long-run of such systems. Example II is an extension of a
three-species model presented in [30] which resembles, for example, the
rock-scissors-paper game, the prisoner’s dilemma with three participants
or the coexistence of different strains of bacteria, such as E. coli, compet-
ing for nutrition, intoxicating, invading, and resisting one another. The
species s1, s2 and s3 interact symmetrically according to the following
twelve reactions:

r1 : s1 → 2s1, r5 : s2 → 2s2, r9 : s3 → 2s3,

r2 : 2s1 → s1, r6 : 2s2 → s2, r10 : 2s3 → s3,

r3 : s1 + s2 → s2, r7 : s2 + s1 → s1, r11 : s3 + s1 → s1,

r4 : s1 + s3 → s3, r8 : s2 + s3 → s3, r12 : s3 + s2 → s2.

(14)

Each species self-replicates (r1, r5, r9), thus every subset of species is an
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organization. Every species decays spontaneously (r2, r6, r10) and each
species can reduce any other (r3, r4, r7, r8, r11, r12). To construct Example
II, a fourth species is added which is created by the previous three and
decays spontaneously:

r13 : s1 + s2 + s3 → s1 + s2 + s3 + s4,

r14 : s4 → ∅. (15)

Figure 6 shows an ODE system basing upon the reaction network of Exam-
ple II together with two simulations, IIa and IIb, which, in the long-run,
exhibit a periodic orbit resp. a heteroclinic orbit.

The simulation example IIa (6b) shows non-static behavior, that is,
the trajectory approaches an attractor for which the concentrations of all
species are above a strictly positive threshold from a certain point in time
on forever. For such attractors, which also can be chaotic, it is easy to
decide which species persist, namely those, for which the concentration
stays above a strictly positive threshold as time goes to infinity.

In simulation example IIb (6c) the trajectory approaches a so-called
heteroclinic orbit, which contains different subsets of species alternating
forever as time goes to infinity. Here it is more difficult to decide, which
of these subsets is to be regarded as persistent and which is not. In
literature, for example [32], the following definitions can be found:

1. A species si is strongly persistent if and only if

lim inf
t→∞

∫
x∈Ω

ci(x, t) dx > 0. (16)

This means that from some point in time on, the species concentra-
tion does not fall below a certain strictly positive threshold anymore.

2. A species si is weakly persistent if and only if

lim sup
t→∞

∫
x∈Ω

ci(x, t) dx > 0, (17)

which means that there is a strictly positive threshold for the con-
centration which is exceeded again and again until infinity.
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ċ1 = 1.156c1 − 2c21 − c1c2 − c1c3,

ċ2 = 2c2 − 1.75c22 − (1 + 2.94)c2c1 − c2c3,

ċ3 = c3 − 0.844c23 − c3c1 − c3c2,

ċ4 = 0.05c1c2c3 − 0.5c4.

(a) ODEs basing upon reaction network Example II (14,15)

(b) Example simulation IIa with periodic orbit in the long-run

(c) Example simulation IIa with heteroclinic orbit in the long-run

Figure 6. (a) ODEs basing upon Example II (14,15). (b) Exam-
ple simulation IIa with initial conditions c1(0) = c2(0) =
c3(0) = c4(0) = 1 leading to a periodic orbit where all
species s1, . . . , s4 persist, that is, have concentrations above
a strictly positive threshold as time goes to infinity. (c)
Example simulation IIb with initial conditions c1(0) =
0.1, c2(0) = 0.64, c3(0) = 0.31, c4(0) = 0.1 leading, in the
long-run, to a so-called heteroclinic orbit, that is a trajec-
tory passing different subsets of species. Overall, the species
s1, s2 and s3 exhibit concentrations above a strictly positive
threshold and concentrations approaching zero in periodic
change as time goes towards infinity, such that they do not
appear all together at the same time. Species s4 does not
persist as its concentration approaches zero.
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Thus, if a species is strongly persistent, then it is also weakly persistent
but the other direction does not hold. If the dynamical system does not
have a spatial dimension then the integral over Ω is omitted, that is,∫
x∈Ω

ci(x, t)dx is replaced by ci(t).
For the example simulation IIb we find that all species are weakly

persistent but none of them is strongly persistent. This statement does
not capture the fact, that certain subsets of species persist but not all
(for example, the subset {s1, s2, s3} does not persist). This is one of the
problems that is solved by the new concept of persistence presented in the
next subsection since it is based upon subsets of species instead of species.

3 Results

3.1 New concept of persistence

Before stating the new concept of persistence two other terms have to be
introduced.

Definition 1. A monotonously increasing sequence (tj)
∞
j=1 of nonnegative

real numbers tending towards infinity with

1 ≤ tj+1 − tj ≤ Z,

j ∈ N, for some Z ∈ R+ is called a sequence of points in time.

Definition 2 (Neighborhood of a subset of species in the space of concen-
trations). Given a subset S ⊆ S of species and real numbers ε, δ > 0, the
set

Sε,δ ≡ {c ∈ Rn
+ : cs

> ε iff s ∈ S

≤ δ iff s /∈ S

}
} ⊆ Rn

≥0 (18)

of concentration vectors is called the (ε, δ)-neighborhood of S.

The neighborhoods Sε,δ are illustrated in Figure 7.
Next, the new concept of persistence is defined.
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c2

c1
0 ϵ

δ
F( {s1}

ϵ,δ )

F( {s1,s2}
ϵ,δ )

F( {s1}
ϵ )   =   F( {s1}

ϵ,δ )        F( {s1,s2}
ϵ,δ )

 

Figure 7. Illustration of Definition 2 for two species s1 and s2 (from
[14]). The ε-environment of {s1}, which is not explained in
this work, is a disjoint union of the (ε, δ)-environments of
{s1} and {s1, s2}.

Definition 3 (Persistent subsets of species and persistent species). Given
a bounded solution c of a reaction-based dynamical system (ODEs, PDEs
or patch-like) with an underlying reaction network (S,R), a subset S ⊆ S
of species is called persistent (with respect to c) if for all sequences (tj)∞j=1

of points in time there is an ε > 0 such that for all δ > 0 the frequency of
occurrence F (Sε,δ) of Sε,δ with respect to c and (tj)

∞
j=1 is strictly positive,

that is,

F (Sε,δ) = lim sup
j→∞

1

tj+1 − tj

∫ tj+1

tj

∫
{x∈Ω: c(x,t)∈Sε,δ}

dx dt > 0. (19)

The set of persistent subsets of species is denoted P (c), i.e.,

P (c) ≡ {S ⊆ S : S is persistent with respect to c}. (20)

A single species s ∈ S is said to be persistent (with respect to c) if s is
contained in at least one of the persistent subsets of species, i.e.,

s ∈ ∪{S ⊆ S : S ∈ P (c)}. (21)

A species s ∈ S is said to go extinct (with respect to c) if it is not persistent
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with respect to c. The set of persistent species IS denoted Φ(c), i.e.,

Φ(c) ≡ {s ∈ S : s is persistent with respect to c} = ∪{S ⊆ S : S ∈ P (c)}.
(22)

Lemma 1 states that the new concept of persistence is a refinement of
the strong and weak persistence of species defined above.

Lemma 1 (Relation between different definitions of persistence). Given
a bounded solution c of a reaction-based dynamical system (ODEs, PDEs
or patch-like) with an underlying reaction network (S,R) and an arbitrary
species s ∈ S, then the following two implications hold true:

1. If s is strongly persistent, then it is persistent.

2. If s is persistent, then it is weakly persistent.

Thus, our new concept of persistence is a refinement of previous ones.
The respective reverse implications are not true.

3.2 Distributed organizations (DOs)

Contrary to organizations, DOs might consist of more than one subset of
species together fulfilling self-maintenance and each of which is closed.

Definition 4. Given a reaction network (S,R) with the stoichiometric
matrix N ∈ Z3×4, a subset D ⊆ S is a DO if and only if there are k, k ∈ N,
different subsets S1, . . . , Sk ⊆ D with

D = ∪k
i=1Si (23)

such that

1. all Si, i = 1, . . . , k, are closed;

2. there is a vector v̂ ∈ Rm
+ , v̂ ≥ 0, such that

Nv̂ ≥ 0; (24)
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All subsets of species

Distributed 
Organizations

Organizations

Figure 8. Illustration of the relation between organizations and dis-
tributed organizations [14]. Especially, there are DOs that
are not organizations.

3. and there is a feasible flux v̂i ∈ Rm
+ , v̂i ≥ 0, with respect to each

subset Si, i = 1, . . . , k, with

v̂ =

k∑
i=1

v̂i. (25)

Collectively, the second and third items of the list above are called the
self-maintenance property of a DO. In the described setting, it is said
that ”D is distributed to the Si” or ”the Si are a distribution of D”. To list
the elements of the subsets Si, i = 1, . . . , k, of species, a special notation
is used, for example, if D is distributed to S1 = {s1, s2} and S2 = {s1, s3},
one can write

D = S1 ∪ S2 = {s1s2|s1s3}. (26)

Note that a species can be contained in several subsets Si, i = 1, . . . , k,

of a DO, and also, a DO can be empty. The next lemma, which is proven in
[14], elucidates the relation between organizations and DOs. The situation
is illustrated in Figure 8.

Lemma 2 (Relation of organizations and DOs).

1. Every organization of a reaction network (S,R) is a DO of that
reaction network.

2. Every DO of a reaction network (S,R) that has a distribution to a
single subset that is k = 1 in Definition 4 is an organization.
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3. There exist reaction networks that exhibit DOs that are not organi-
zations.

4. For a given reaction network, the set of DOs always forms a lattice
(not only a Hasse diagram as it is the case for the set of organiza-
tions), that is, for any two DOs A and B there is a unique minimal
DO (”infimum”) that contains A and B and a unique maximal DO
(”supremum”) that is contained in A and in B (cf. Figure 9).

As the gray boxes in 9 indicate, Example I and Example II both contain
DOs that are not organizations. Note that the uniqueness of the minimal

s1s2|s1s3 → r1r2r4

s1s2 → r1r4

s3 → ∅

∅ → ∅

(a) Lattice of DOs of Example 1.

s1s2s3s4

s1|s2|s3

s3s2s2s1s1s3

s2s3s1

∅

(b) Lattice of DOs of Example II (14,15)

Figure 9. Lattice of DOs of Example I and II. (a) Compared to the
Hasse diagram of organizations (see Figure 2), the lattice
is completed at the top by the DO containing all species.
Besides the species, for each DO the set of reactions is in-
serted after a right arrow. The ”behavior” of a DO is bet-
ter described by its set of active reactions than by species
that are possibly non-reactive. For the DO containing all
species, the reaction r3 is switched off by the distribution
of its support to different compartments. This guarantees
self-maintenance. (b) There is one DO which is not an or-
ganization (gray box) since if all species s1, s2 and s3 were
in the same compartment, s4 would be produced and thus
closedness would be violated. The arrows link those subsets
of species that persist in simulation IIb in the order they
appear in a periodic pattern in the long-run (cf. Figure 6c).

set which contains two given DOs A and B (stated in Lemma 2) allows for
defining a generator operation for DOs. This in turn provides an instru-
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ment to calculate all DOs of a reaction network. In the next subsection,
the main result of this work is stated.

3.3 Main result about the relation of DOs and persis-
tent species

Next, Theorem 2 is stated, which links DOs and persistence as defined in
the previous subsections.

Theorem 2 (The set of persistent species is always a DO). Given a
bounded solution c of a reaction-based dynamical system (ODEs, PDEs or
patch-like), the set Φ(c) of persistent species (as defined in Definition 4)
is a DO of the underlying reaction network (S,R).

The proof of the self-maintenance of Φ(c) is based upon the construc-
tion of a flux vector

v̂ = v̂(c, (tl)
∞
l=1) ≡ lim

j→∞

1

tj+1 − tj

∫ tj+1

tj

∫
x∈Ω

v(c(x, t)) dx dt ∈ Rm
+ (27)

constructed from the solution c of the dynamical system. The structural
similarity of this construction to the central equation 19 of persistence
gives a clue as to why Theorem 2 holds. To exemplify 2, in Table 2, for
all the simulation examples presented in this work the persistent subsets
of species, that is, DOs are listed.

Thus, for a given reaction network, the lattice of DOs gives an overview
of all subsets of species (and their inner structure) that have the poten-
tial to persist in the long-run of a solution/simulation of any dynamical
system that is based upon that reaction network. Without knowing the ki-
netic laws or reaction constants applied this facilitates understanding such
possibly huge systems for which the simulation effort might be enormous.
In [17, 19] it was shown how this can be used to understand, compare,
design and evaluate virus infection dynamics models. More general, many
types of dynamics described by reaction rules can be analyzed this way,
such as, for example, the photochemistries of the martian atmosphere on
the dayside and on the nightside [33].
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reaction
network

simu-
lation

dynamical
system

attractor
type

persistent
DO

example I

Ia ODEs fixed point ∅
Ib ODEs fixed point {s3}
Ic ODEs fixed point {s1s2}
Id PDEs (RDS) fixed point {s1s2|s1s3}
Ie patch-like fixed point {s1s2|s1s3}

example II IIa ODEs periodic {s1s2s3s4}
IIb ODEs heteroclinc {s2s1|s1|s1s3

|s3|s3s2|s2}

Table 2. Overview of the example reaction networks presented in this
work, the simulation examples built upon them, their types,
the approached attractors, and the corresponding persistent
subset of species, that is, DO. It is clear that the persistent
subsets of all simulation examples are represented by a DO.
Theorem 2, the main result of this work, states that this would
be the case for all bounded solutions of dynamical systems
fulfilling a certain continuity condition.

4 Conclusions

The aim of this work was to give an overview of how dynamical systems
can be analyzed by using COT. Thereby, proofs and mathematical details
were omitted, which can be found in [14]. It was shown that the lattice
of DOs of a given reaction network contains all possibly persistent subsets
of species of a dynamical system. This helps in understanding and eval-
uating the dynamics of such systems without simulating them and even
without knowing details such as kinetic laws or reaction constants. This
was shown, for example, in [17, 19], where the lattices of DOs were com-
puted and compared for several virus infection dynamics models. This
technique can be compared to fixed-point analyses of dynamical systems
and to bifurcation theory in the sense that it provides a general overview
of some aspects of a dynamical system, but COT works on a more ab-
stract level and necessitates less information about the system. Unlike
other reaction network analysis techniques, COT creates a connection to
dynamical systems by providing information about them.

Currently, a publication of a tool to compute the DOs of a reaction
network is in progress. The associated algorithm will also be published
soon. There it will be shown that replacing DOs with their respective
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active reactions leads to lattices (of reactions) again. This way, different
behaviors (that is, different sets of active reactions) for one and the same
DO can be described better.

We show that our technique can easily extend for example to different
boundary conditions [18]. Future work will explore other systems in a
similar way.
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