Department	SciTec
Degree programme	SI
Module name	FEM and Simulation
Module number	SciTec.2.250
Study and Examination Regulations	ER-version 41 (of 16.07.2021)
Compulsory/ compulsory optional/ optional	compulsory optional module
module	
Module coordinator	Prof. Dr. Frank Dienerowitz
Module content	FEM-analysis for the following structural mechanics problems:
	 buckling (linear and non-linear)
	 contact mechanics
	modal analysis
	harmonic analysis
	Introduction to optimisation:
	 parameterisation of problems parameterisation of problems
	 Sensitivity analysis (design of experiments, evaluation of results, deriving meta model)
	 ontimisation (design space, objective function, optimisation methods)
	robust optimisation)
Learning objectives	The students:
	 are able to categorise problems of "buckling", "contact mechanics",
	"modal analysis" and "harmonic analysis"
	 to implement and analyse them using computer-based tools
	 are able to cross check results of simple problems by means hand
	calculation
	 are knowledgeable about key limitations and challenges for these
	problems
	 are able to implement and conclude optimisation problems
	(mathematical model is given, up to around 10 parameters) using
Course tune (lecture cominer eversion	computer-based tool, performing sensitivity analysis and optimisation
ractical course)	2L-1S-0E-1P
Recommended literature	Gebhardt C. Praxisbuch EEM mit ANSYS Workbench: Einführung in
	die lineare und nichtlineare Mechanik. Carl Hanser Verlag. 2014
	Lee, HH., Finite Element Simulations with ANSYS Workbench 14,
	SDC Publications, 2012
	 Mac Donald, B. J., Practical Stress Analysis with Finite Elements,
	GLASNEVIN Publishing, 2011
Learning materials	hand-outs supporting lecture and tutorial contents
Method(s) of instruction/ media being used	Lecture and practical course (tutorials)
Level/ category	INASTER (CATEGORY: 2)
Which semester (winter/ summer term)	
Poquirements for attendance	Z Introduction into Einito Elements Mathed
necessary knowledge	
Assessment (written/ oral test_paper_etc.)	alternative examination
	course achievement: successful attendance of practical course
ECTS credits	6
Work load in:	180 h of total work load, therefrom
	 60 h of presence at university
	 120 h of self-study
Usability of this module	Advanced 3D-Design
Frequency of offer	Every study year
Duration of module	1 semester
Place/ room	Ernst-Abbe-Hochschule Jena - University of Applied Sciences Jena
Time	According to schedule
Language(s)	English