Department	SciTec
Degree programme	SI
Module name	Optical Instruments
Module number	SciTec 2 200
Study and Examination Regulations	ER-version 38 (of 21.03.2018)
	ER-version 39 (of 23.07.2019)
	ER-version 41 (of 16 07 2021)
Compulsory/ compulsory ontional/ ontional	
module	
Module coordinator	Prof. Dr. Robert Brunner
Module content	Fundamentals in ray ontice as a basis for the understanding of the working
	rinciple of optical instruments:
	Free Erospol Principle (principle of least time)
	 Fresher-Frinciple (principle of least time) imaging equation optical properties of a long makers formula
	 Imaging-equation, optical properties of a lens-makers formula aparture and field step, pupils and windows
	 apertationa (observation appariant) and windows appartationa (observation appariant) appariant appariant distortion field
	 abenations (chromatic, spherical, coma, astigmatism, distortion, neid survisture) - correction of observations
	wave oplics:
	 Huygens-Principle, grating equation, Abbe-theory Maxwell Equations Equips Online Example for Differentian Deviation
	 Maxwell-Equations, Founer-Optics, Fraunnoier-Diffraction, Rayleign- Orthonics, DOE
	Criterion, DOF
	Introduction into the structure and working principles of optical instruments:
	 Eye and visual perception, microscopy (bright-field – dark-field, phase contract. Electropagnes, Microscopy)
	phase-contrast, Fluorescence-Microscope)
	 optical Lithography (deep-UV – EUV, illumination systems phase
	masks)
	 spectral sensors (Czerny- I urner, Imaging spectrometer)
	special modern optical elements:
	switchable elements
Learning objectives	After completing the module, the students are able to:
	 explain the basic principle of ray optics and apply the competency to singula setting explanation.
	simple optical systems.
	 transier basic optical concepts to application-oriented problems.
	 to describe the basic wave optical aspects, in particular to explain the use active linefugace on active production.
	wave-optical influence on optical resolution.
	 to compare different optical instruments such as microscopes,
Course ture (lecture cominer eversions)	projection units, telescopes and spectroscopic systems.
course type (lecture, seminar, exercises,	3 L – 0 S – 0 E – 1 P
Practical course)	Dedrotti: Introduction to Ontion Addison Weslaw 2rd edition 2006
Recommended merature	 Pedrolli. Introduction to Oplics. Addison-Wesley, 51d edition, 2000 Heapti Optice. Addison Wesley: 4th edition, 2001
	 Recrit. Optics: Addison-westey, 4th edition, 2001 Bern. Welf: Bringinles of Optics: Combridge University Press; 7th
	 Born, woll. Principles of Oplics, Cambridge University Press, 7th adition, 1000
	euliion, 1999
Learning meteriale	Goodman. Infloduction to Fourier Optics, McGraw-Fill, 1990
Learning materials	
wellou(s) of instruction/ media being used	Meeter (esterony 2)
Level/ category	iviasiei (Calegoly, 2)
Which somester during the programme	
Populizamento for attendance	2 Radio courses in Dhusics and Mathematics
Requirements for attendance,	Basic courses in Physics and Mathematics
Accomment (written / arel test mener at)	Written exemination (00 minutes)
Assessment (written/ oral test, paper, etc.)	willen examination (30 minutes),
FOTO evadite	
ECIS Creats	0 190 h of total work load therefore
work load in:	INU N OT TOTAL WORK IOAD, THERETROM
	 ou n or presence at university 420 h of cells at university
	■ 120 n of self-study
Usability of this module	Micro- and Nanostructures, Precision Instrumentation, Research Internship,

	Master Thesis
Frequency of offer	Every study year
Duration of module	1 semester
Place/ room	Ernst-Abbe-Hochschule Jena - University of Applied Sciences Jena
Time	According to schedule
Language(s)	English