Department	SciTec
Degree programme	LOT, SI
Module name	Introduction to FEM
Module number	SciTec.2.172
Study and Examination Regulations	ER-version 38 (of 21.03.2018),
	ER-version 39 (of 23.07.2019),
	ER-version 41 (of 16.07.2021)
Compulsory/ compulsory optional/ optional	compulsory optional module
module	
Module coordinator	Prof. DrIng. Frank Dienerowitz
Module content	 Introduction to FEM
	 FEM procedure
	 modelling structural mechanics problems
	 overview on types of elements
	 discretisation of the model (meshing)
	 application of boundary conditions
Learning shields -	 solving and post-processing
Learning objectives	The students:
	 are able to categorise simple structural mechanical problems (statics) with records to EE analysis
	 with regards to FE analysis. are able to implement the problems using computer based tool.
	 are able to name and explain essential aspects of FE analysis (model)
	simplification, stress concentration and singularities, mesh
	convergence, verification, limitations of FE analysis).
	 are able to evaluate the results (deformation, stress, safety factor
	reaction forces).
Course type (lecture, seminar, exercises,	2L-0S-0E-1P
practical course)	2L-0S-0E-1P
Recommended literature	Gebhardt, C., Praxisbuch FEM mit ANSYS Workbench: Einführung in
	die lineare und nichtlineare Mechanik, Carl Hanser Verlag, 2014
	 Lee, HH., Finite Element Simulations with ANSYS Workbench 14,
	SDC Publications, 2012 sowie aktuelle Fassung
	 Mac Donald, B. J., Practical Stress Analysis with Finite Elements, CLASNEVIN Dublishing, 2014
Learning metericle	GLASNEVIN Publishing, 2011
Learning materials	hand-outs supporting lecture and tutorial contents Lecture, practical course (tutorial)
Method(s) of instruction/ media being used	
Level/ category Which semester (winter/ summer term)	Master (category: 2) Winter term
Which semester during the programme	1
Requirements for attendance,	statics, mechanics of materials
necessary knowledge	
Assessment (written/ oral test, paper, etc.)	alternative examination
	course achievement: successful attendance of practical course
ECTS credits	3
Work load in:	90 h of total work load, therefrom
	 45 h of presence at university
	 45 h of self-study
Usability of this module	FEM and Simulation, Advanced 3D-Design
Frequency of offer	Every study year
Duration of module	1 semester
Place/ room	Ernst-Abbe-Hochschule Jena - University of Applied Sciences Jena
Time	According to schedule
Language(s)	German/ English