Department	SciTec
Degree programme	SI
Module name	Electronic Hardware Systems
Module number	ET.2.904
Study and Examination Regulations	ER-version 41 (of 16.07.2021)
Compulsory/ compulsory optional/ optional	compulsory optional module
Module Modulo coordinator	Prof. Dr. Burkart Val. Olivar Baimar
Module coordinator	Proi. Dr. Burkart vois, Oliver Reimer
Module content	Part 1: Complex analogue nardware systems
	 analogue system design simulation mothods and analysis of cloatronic circuits
	Part 2: Complex digital bardware systems
	methodologies for the design of complex electronic systems:
	 Concents of hardware modelling and the design flow based on
	hardware description languages including special concepts of
	behavioural modelling of heterogeneous systems:
	 high-level synthesis and modelling according to abstraction levels
	and verification
Learning objectives	Part 1: Complex analogue hardware systems
	At the end of the module students are able to design electronic circuits with
	respect to practical requirement.
	The students will know the most common simulation methods of electronic
	circuits as there are Transient Analysis, DC-Analysis and Frequency
	Analysis and they have practical experience with simulation software.
	Part 2: Complex digital hardware systems
	At the end of the module students are able to create models of complex
	electronic systems with respect to the levels of abstraction of the Y-diagram
	of Gajski and Kunn. The students understand the main concepts of
	The students remember the enseities of complex cleatronic bordware
	systems as well as the general requirements and they remember the
	design flow starting from a more abstract behavioural description down to
	the circuit topology
Course type (lecture, seminar, exercises,	
practical course)	3 L – 0 S – 0 E – 1 P
Recommended literature	 Dennis Fitzpatrick: Analog Design and Simulation Using Orcad
	Capture and PSPICE, Newnes, 2017
	 P. Marwedel: Embedded System Design. Springer Verlag, 2011
	 D. Gajski et al: Specifications and Design of Embedded Systems.
	Addison Wesley, 1994
Learning materials	Lecture notes, examples
Method(s) of instruction/ media being used	Talk, case study, lectures, interactive tutorials/ practical courses
Level/ category	Master (category: 2)
which semester (winter/ summer term)	
Which semester during the programme	
Requirements for attendance,	none
Assessment (written/ oral test namer etc.)	written examination (90 minutes)
Assessment (written/ oral test, paper, etc.)	course achievement: successful attendance of practical course
ECTS credits	6
Work load in:	180 h of total work load, therefrom
	 60 h of presence at university
	 120 h of self-study
Usability of this module	Master thesis
Frequency of offer	Every study year
Duration of module	1 semester
Place/ room	Ernst-Abbe-Hochschule Jena - University of Applied Sciences Jena
Time	According to schedule
Language(s)	English