

REXUS 32 GAMEON

Per Kopfsprung ins All: Glider for Atmospheric Measurements and Experiments

1 Experiment objectives

2 Developed platform

1 Experiment objectives

2 Developed platform

RX25 GAME

Figure: Ejection of RX25 GAME

- 3rd Rexus / Bexus mission at EAH Jena
- successfully developed a microglider platform and launched 2019
- Problem: not recovered, Depron foam melted

Experiment objectives

Figure: GAMEon module inside RX32

- Transport a glider with a sounding rocket to near space altitude
- Eject the Free Gliding Unit (FGU) from the **REXUS** rocket
- Transition from high speed vacuum ambient conditions to stable flight
- Establish radio transmission between glider and collect flight data
- Autonomous controlled flight towards a target coordinate
- Measure heading based on sun azimuth using photodiodes

1 Experiment objectives

2 Developed platform

Developed platform (Mechanics)

Figure: Module, consisting of Rocket Mounted Unit (RMU) and Free Gliding Unit (FGU)

- RMU: Ejection mechanism from RX25 GAME, new camera, new electronics (RCU)
- FGU mounted with steel wires and spring mechanism and ejected via pyro cutters
- Developed FGU made of balsa wood, weight 143 g, wingspan 262 mm

Developed platform (Electronics) [1/3]

Developed platform (Electronics) [2/3]

Developed platform (Electronics) [3/3]

- Autonomous flight based on GPS coordinates + IMU or Sun Angle + IMU
- Generated current of 8 photodiodes, converted to voltage, filtered and amplified
- Based on known characteristics of the photodiodes, a resulting sun-angle can be calculated
- With known time and location: heading can be calculated

Figure: Photodiode orientation on glider

1 Experiment objectives

2 Developed platform

Ejection and rocket start

Figure: Glider inside RX32 nosecone

Figure: Ejected glider next to RX32 nosecone and motor

Glider trajectory and flight phases [1/2]

Figure: 3D path of the glider/RX32 calculated from GPS data

Figure: 2D path

Glider trajectory and flight phases [2/2]

Figure: Total absolute — acceleration and — angular velocity over time and — altitude with marked flight phases: — ejection, — apogee, between — stable flight phase 1 and — stable flight phase 2.

Heading calculated from photodiode data

Figure: Comparison of — sun-heading, — gps-heading and — drift compensated yaw angle

- Comparison of calculated heading with GPS heading and yaw angle (drift compensated)
- Sun-heading of the glider deviates from the direction of movement (GPS-heading) by approx. 20-25 degrees - wind came from the west
- Conclusion: detecting the heading of a glider, using 8 photodiodes, is possible
- Future work: improve calculation and find out how many photodiodes are needed (on balloon missions)

Overall results of RX32 GAMEon

Figure: Recovered glider

- Glider was successfully ejected from RX32 rocket (65 km altitude, Apogee: 76 km)
- Went into spiral dive, went into stable, autonomously controlled flight at 6.2 km altitude
- Data was transmitted to GSI from ejection to landing
- Glider was recovered without any noticeable mechanical or electronical damage
- Concept of measuring the heading using photodiodes was proven

Thank you for your attention!

