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System functions of many linear physical systems or autocorrelation functions of their output 
signals are often a sum of relaxator terms with different relaxation times and amplitudes. In 
the time domain a superposition of exponential decays e- Y’ is observed, while in the frequency 
domain a sum of relaxator terms of structure l/( y + iw) is measured. Thus, the response is 
either the Laplace transform of the system function or its Stieltjes transform, respectively. In 
both cases it is the task of an analyst to gain the relaxation times and weights from the 
measured signal. An exact reconstruction of the system function is limited by the noise, 
measuring time, and number of points measured. In this paper procedures for the approximate 
reconstruction of the system function are introduced. The equivalence of most of them is 
shown and their properties are discussed. An expression for the limit of resolution is derived 
for a given signal-to-noise ratio. The results are applicable to experimental data from various 
physical systems. For illustration the autocorrelation function of the light scattered from 
polymer solutions and the response of photoconductors are used. 

1. INTRODUCTION 

For numerous examples of linear physical systems, the 
system function can be represented by a superposition of 
relaxator terms (with relaxation frequency y). Thus in the 
time domain the system functionf( t) can be written as 

j-c f) = 
s 

= e - “‘SC y)dy, t>O, (1) 
0 

or, if the distribution is of discrete form 
g(y) = vqJ(y - Yn 1, 

f(t) = C a,,e - “+. 
I, 

(2) 

The physical system is then completely described by the dis- 
tribution functiong( y) in Eq. ( 1); cf. the set {a,, } in Eq. (2). 

In the frequency domain, the system function is given by 

f(w) = I-+ OLI --&g(y)dy, Jo y+ IW 
or an equivalent sum, if the distribution is of discrete form. 
The problem to be solved is the inversion of Eqs. ( 1) and (3) 
for g( y); cf. Eq. (2) for the set {a,, 1. 

Equations ( 1 )-( 3) are examples of Fredholm integral 
equations of the first kind, with a kernel function which de- 
pends only on the product of the introduced variables (“it; cf. 
o/y). Actually, the inversion of nearly all integral equations 
of the first kind represents an ill-posed problem, and a solu- 
tion has to overcome this difficulty. 

For practical purposes it is important to know in which 
way a method applied overcomes the ill-posedness of the 
inversion problem. But it is of the same importance to know 
the limits of a method, to be able to determine if it produces 
relevant results or rubbish. We do not treat the problem in a 
formal mathematical way, but we want to generate evident 
pictures, which are helpful for the practical use. 

The paper is organized as follows: In Sec. II the nature 
of the ill-posedness of the inversion problems Eqs. ( 1 )-( 3) 

is illustrated by a simple argument. In Sec. III several pro- 
posals for the inversion of Eq. (1) are given in detail: the 
application of the well-known inversion formula for the La- 
place transform,’ the twofold mapping method, developed 
by Dohler and Go&e* and Link,3 the differential operator 
method, developed by Love and Byrne4 and Lustig,’ the 
eigenfunction expansion of McWhirter and Pike,’ and the 
deconvolution method, introduced by Gardner, Gardner, 
and Meinke.’ In Sec. IV it is shown that the proposals of 
Refs. 4-7 can be mapped onto each other. In Sec. V a simple 
estimate for the resolution of the inversion procedures is de- 
rived. In Sec. VI it is shown that methods for an approximate 
solution of the inversion problem can be constructed and 
visualized by using a filter concept.* Section VII gives a 
short description for the deconvolution in the frequency do- 
main. Section VIII shows the practical questions of inver- 
sion procedures by two different kinds of experiments, quasi- 
elastic light scattering3v9 and response of 
photoconductors. “,’ ’ Recently introduced other physical 
applications include MEDLTS (multiexponential deep-lev- 
el transient spectroscopy),‘2v’3 photoacoustic depth profil- 
ing, I4 and the thermal wave analysis of pyroelectricity distri- 
butions15s’6 in polymeric films. The results may also be ap- 
plied to other problems in physics, as, for example, the inver- 
sion of the moment expansion,” which is equivalent to a 
Laplace transform known on a discrete set of points. An 
application of this inversion problem can be found in 
QCD.lX 

II. INFLUENCE OF NOISE 
Ill-posedness is a feature of virtually all inversion prob- 

lems associated with integral equations of the first kind. The 
ill-conditioned nature of the inversion of Eq. ( 1) can be illus- 
trated in a very simple manner. Let us consider the effect of 
some arbitrary oscillating term a, sin( wy) added to the so- 
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