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Abstract—The electric polarization in polyethylene oxide com-
plexed with LiClO4 has been investigated over the frequency
range from 10 mHz to 10 kHz. The exciting electric fields have
been chosen so high that nonlinear components in the dielectric
response are evident. Nonlinear dielectric and conductive spectra
are determined and their temperature dependence is studied.

It is found that the nonlinear relaxation shows a tempera-
ture dependence similar to the linear relaxation. With rising
temperature the phenomena shift to higher frequencies and the
relaxation strength increases. To evaluate relaxation frequencies
and strengths theoretical functions are fitted to the experimental
data. While the linear spectra are reproduced well over the whole
frequency range, a reasonable agreement between experimental
data and theoretical curves is found in a limited frequency range
only for the nonlinear spectra.

Index Terms—Conductivity, Polarization, Spectroscopy, Non-
linearities, Relaxation processes

I. INTRODUCTION

Ion-conducting polymers are utilized as solid state elec-
trolytes in electrochemical devices and have been extensively
investigated. Typical examples of such systems are poly-
ethylene oxide (PEO) or polypropylene oxide (PPO) com-
plexed with alkali metal salts like LiClO4 or NaCF3SO4.

Analysis of the nonlinear components of the relaxation
phenomena can give further insight into the nature of the
microscopic mechanisms involved and additional information
about dipolar and ionic motion can be attained [1]. One ex-
ample where nonlinear spectroscopy was successfully applied
is in testing the ion hopping model [2], [3], as done by
several authors [4], [5], [1]. Here, from n-th order direct
current conductivities σdc

n , ion hopping lengths a can be
estimated. Using the relation between first and third order
dc conductivity one finds: σdc

3 /σdc
1 = (q2

ea2)/(24k2T 2) (qe-
elementary charge, k-Boltzmann’s const., T -temperature). Ion
hopping lengths in the range of a few nanometers to some ten
nanometer were obtained in that manner.

Furthermore, with data obtained from nonlinear spectro-
scopic measurements the polarization as given in the Langevin
function can be estimated over the whole range of electric field
strength [1] and subsequently it is possible to find approximate
values of the saturation polarization.

While a number of papers report on nonlinear investigation
of ion conducting polymers, the physical significance of the

third order permittivity or conductivity (ε∗3 = ε′3 − i ε′′3 , σ∗3 =
σ′3 + i σ′′3 ) is still not fully understood. Such understanding
could, in turn, provide new approaches for the development of
high-performance batteries—lithium polymer electrolytes find
application in today’s most widely used batteries—and for the
design of optimized sensor films, by tailoring the conductivity
of the polymer matrix material.

II. THEORY

The dielectric induction of a nonlinear nonrelaxational sys-
tem can be expanded in odd powers of the electric field [6]:

D(ω) = ε1(ω)E + ε3(ω)E3 + ε5(ω)E5 + . . . . (1)

In dielectrics with inversion symmetry (no zero-field polar-
ization: D0 = 0 and D(E) = −D(−E)) only odd powers
contribute to the series-development [7, p.3]. In (1) the term
ε1 defines the linear permittivity, the εn with n = 3, 5, . . . are
n-th order nonlinear permittivities [1].

Nakada suggested to write the nonlinear response of a
relaxational system as sum of multiple convolutions [8]. D(t)
denotes the dielectric induction caused by the time-dependent
electric field E(t):

D(t) =

∞∫

0

E(t− t1) ε1p(t1) dt1

+

∞∫

0

∞∫

0

∞∫

0

E(t− t1)E(t− t2)E(t− t3)×

× ε3p(t1, t2, t3) dt1 dt2 dt3
...

+

∞∫

0

. . .

∞∫

0

E(t− t1) . . . E(t− tn)×

× εnp(t1, . . . , tn) dt1 . . . dtn.

(2)

In (2) the nonlinearity of the system is described by
extended pulse response functions εnp(t1, t2, . . . , tn), that
characterise the system’s response to a series of n pulse exciti-
ations. This equation can be understood as a generalisation of
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