
Figure 3: Average impact of element as calculated by SHAP.
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Method

Introduction
The martensite start temperature (Ms) is used for the optimization of the heat treatment of steels and to 

tailor its microstructure and its mechanical properties such as hardness, toughness, strength and ductility 

by precisely controlling the formation and amount of martensite. The Ms mainly depends on the chemical 

composition, but still is a complex problem to predict. Previous works applied empirical [1], machine 

learning [2, 3] and thermodynamic [4] models successfully within limitations, such as focus on certain steel 

types or by executing additional feature engineering. The goal of this work is to overcome existing 

limitations and improve the Ms prediction accuracy for all steel types in a single machine learning model. 

Two publicly available datasets [4, 5] were merged and 

cleaned, retrieving a total of around 1800 entries with 

up to 15 chemical elements including all types of steel 

alloys. The Ms ranges from 150 K to 790 K, but is 

imbalanced having substantially more Ms above 400 K 

(s. Figure 2). The training-validation dataset was 

formed of 1500 randomly selected entries. The 

remaining 300 entries form the final test dataset. 

Extensive hyperparameter tuning was performed to find 

the best multilayer perceptron model (MLP) for this 

dataset. These included width and depth of the model 

as well as varying optimizers, activation functions, 

momentum, weight decay and learning rate. Each 

model was evaluated using a 5-fold cross validation 

approach. Finally, the best hyperparameters were 

trained without cross validation and validated against 

the test dataset.

Additionally, the explainable AI method SHAP [6], 

based on shapley values (game-theoretical approach), 

was applied to estimate the effect of a single chemical 

element on the Ms in the trained MLP. The goal is to 

better understand the model’s inner workings by cal-

culating the predictions for all possible subsets for a

set of chemical elements and compare the differences. 

Ms Prediction App

References
Access the App via the QR-Code above or:

https://eah-jena-ms-predictor.streamlit.app

Newly formed Database and Source code 

are available at:

https://github.com/EAH-Materials/MartensiteStart_DeepLearning

Open Source

Results
This work presents 

i) a deep learning model for the prediction of Ms which

ii) achieves higher overall accuracy than existing models 

while 

iii) not being restricted to certain steel types, removing 

the need-to-know which model predicts best for a 

certain steel alloy. 

The model is not explicitly constrained to physically 

meaningful values and may predict a Ms below 0 K. A 

physics-constrained network could potentially overcome 

these effects. (More) Publicly available data in high 

quality helps building better models, but carefully 

examining them for unrealistic data is important too. 

Grain size and cooling rate have not been considered. 

The prediction can still be improved for steels that are not 

yet part of the training data. 

Explainable AI methods like SHAP help to understand the 

inner workings of the model, but not yet the physics.

Conclusion
The best MLP consists of two hidden 

layers, 64 parameters each, with a 

total of 5000 trainable parameters. It 

outperforms the existing state of the 

art model [2] as displayed in Figure 2. 

Also, two outliers were found that the 

model could not fit well, but no other 

model could fit them well either.

The final model is deployed as Web 

App which can be seen in Figure 1.

The SHAP analysis in Figure 3 

shows the average impact for each 

element on the prediction of the Ms.

Further analysis showed that these 

values vary considerably, depending 

on the actual alloy. Yet, according to 

our model both C and Ni have the 

greatest impact, while Mn, Cr and N 

have a similar medium impact.

Figure 1: Screenshot of the web 

app hosting our machine learning

model for easy use. Predicts Ms 

also by using a thermodynamic

and empirical model [1]. The Local

Outlier Factor determines how well

the input is represented by the

training data (close to 1 is good).

Test Ours Agrawal [2]

R² 0.9311 0.9272

MAE 17.38 18.55

SD 19.69 19.73

Full Ours Agrawal [2]

R² 0.9622 0.9332

MAE 13.50 18.52

SD 15.94 20.52

Figure 2: Tables: Comparing R², Mean Average Error and Standard 

Deviation with SOTA (top left: overall records n=1843, bottom right: 

test dataset n=300). Graph: Predicted vs. measured Ms on the test

dataset, orange „x“ marks outliers (∆> 2𝜎 as of training dataset).
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