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Abstract

In this work we characterize the set of persistent species in dynamical systems related
to chemical reaction networks. Chemical reaction networks consist of a set of species
and a set of reaction rules describing the interactions between the species. From
a reaction network, by differentiation with respect to time and space, a reaction-
diffusion system can be derived describing the dynamics of the concentrations of
the species. We show how double integration with respect to time and space of the
solutions of the RDS conversely leads back to the reaction network and reveals all
the possibly persistent subsets of species. We show that organizations as defined
in chemical organization theory (COT) are strongly related to the persistent subsets
of species. Organizations are subsets of species that have two properties. Firstly,
they are closed, that is, there is no reaction running on them that produces new
species which are not contained in the organizations. Secondly, organizations are
self-maintaining. By additionally allowing for the distribution of species we gener-
alize organizations towards distributed organizations (DOs). After introducing our
concept of persistence, as the first main result of this study, we prove that for a given
reaction network the set of DOs is always a lattice. The second main result is that the
set of persistent species of a solution of a RDS is always a DO. By linking these two
results we achieve a connection between persistence concerning a single solution of a
RDS and persistence with regard to all solutions of all RDS having one and the same
underlying reaction network. We show how this strongly benefits reaction network
analysis. By presenting simulation results performed with Matlab we illustrate the
discussed phenomena.

Keywords: reaction-diffusion system, ordinary differential equation, partial dif-
ferential equation, dynamical system, persistence, reaction network, chemical orga-
nization theory, distributed organizations, long-term behavior, attractor
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Chapter 1

Introduction

Reaction systems are widely used to describe and to study phenomena in various ar-
eas such as Biochemistry [54] or research on the origin of life [24, 56]. Those systems
are often very complex. Reaction network theory provides various approaches to
deal with that complexity like for example deficiency [12, 25], RAF theory [54], Chem-
ical Organization Theory [7], subnetwork analysis [5], elementary modes [51], graph
theory [16, 52] or Lyapunov functions [38]. Among others, these approaches allow
for analyzing behavior of reaction systems including the question which species can
persist in the long-run [47, 42].

In this work we broadly discuss this question: Which properties do those sub-
sets of species have that persist in a dynamical reaction system, in which species
interactions are described by reactions as known from chemistry?

First, we introduce (chemical) reaction networks and reaction-diffusion systems
(RDS) and give an outline of this work. The symbols and abbreviations used in this
paper are summarized in Table 1. Given a finite set S = {s1, . . . , sn} of n species (or
molecules) together with a finite set R = {r1, . . . , rm} of m reactions, we call (S,R) a
(chemical) reaction network. Each reaction r j ∈ R, j = 1, . . . , m, can be depicted by a
so-called reaction equation using a right arrow

n∑
i=1

ai jsi →

n∑
i=1

bi jsi (1.1)

where ai j, bi j ∈N0 ≡N∪ {0}, i = 1, . . . , n, j = 1, . . . , m. The difference of the matrices
A = (ai j) ∈ Nn×m and B = (bi j) ∈ Nnxm is called stoichiometric matrix N = B −A ∈
Znxm. For a reaction r j ∈ R, j ∈ {1, . . . , m}, we call the set of species si with ai j > 0 the
support of r j, denominated by support(r j) or supp(r j). Note that if a species si ∈ S is
reduced by a reaction r j ∈ R, that is ni j < 0, then si ∈ supp(r j), that is, ai j > 0. For a
reaction r j ∈ R, j ∈ {1, . . . , m}, the species si with bi j > 0 are called products of r j.

A dynamical system can be derived from a reaction network by assigning to each
species si ∈ S, i = 1, . . . , n, and every time t ∈ R+ ≡ {u ∈ R : u ≥ 0} a non-negative
concentration value ci(t). We call a map ϕmapping a concentration vector back to a
subset of species from the power set P(S) of the set of species, that is,

ϕ : Rn
≥0 → P(S), c 7→ ϕ(c), (1.2)

abstraction, if

ϕ(c) ≡ {si ∈ S : ci > 0 for any i ∈ {1, . . . , n}}. (1.3)

Thus ϕ(c) is the subset of species that contains exactly those species that have a
strictly positive concentration value. Species with concentration equal zero do not
belong to ϕ(c). The abstraction ϕ plays an important role in this work, since it allows
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for linking the concentration vectors of a solution of a dynamical system with its
underlying reaction network.

Now we come to the question of how the reactions rulethe concentration values
of the species in a dynamical system. For a given subset S ⊆ S of species, we call a
vector v ∈ Rn

+ feasible flux with respect to S, if for all r j ∈ R, j = 1, . . . , m, holds

v j

> 0, iff support(r j) ⊆ S,
= 0, otherwise.

(1.4)

A function

v : Rn
+ → Rm

+, c 7→ v(c), (1.5)

that is Lipschitz continuous on every bounded subset of Rn
+, is called flux vector

function, if for every c ∈ Rn
+ the vector v(c) is a feasible flux with respect to ϕ(c).

Thus the flux vector function maps any vector of concentrations to a vector of reaction
rates. If for example mass-action kinetics is applied (v j(c) = k j · c

a1 j

1 · . . . c
anj
n with real

reaction constants k j > 0, j = 1, . . . , m,) to constructing v, then v is a flux vector
function, because then it holds true that v j(c) is strictly positive, if and only if the
concentrations of all the species from the support of r j ∈ R are strictly positive. This
represents the common assumption, that a reaction occurs, if and only if all of its
reactants are present at the same time and place [12].

By defining the derivatives of the concentrations with respect to time we obtain
a dynamical system as a system of ODEs

d
dt

c(t) = ċ(t) ≡ N · v(c(t)), (1.6)

which describes how the change of the concentrations of the species from S results
from the concentrations via the set of reactionsR. In thiscase we say that the reaction
network underlies the dynamical system. By adding initial conditions c(0) = c0

∈ Rn
+

we get an initial value problem.
If besides the time variable t, a space variable x ∈ Ω from a connected domain

Ω ⊂ Rp, p ∈N, with 0 <
∫

Ω dx < ∞ and a C2 smooth boundary ∂Ω is added, we can
model effects like diffusion by differentiating twice with respect to x. Thus we arrive
at describing the dynamics of the concentrations ci(x, t), i = 1, . . . , n, of the species
for each location x ∈ Ω by a system of PDEs

∂
∂t

ci(x, t) = N · v(c(x, t))
reactions

+ di
∂2

∂x2 ci(x, t)

di f f usion

, i = 1, . . . , n, (1.7)

where di ≥ 0, i = 1, . . . , n, are the diffusion rates of the species. By adding twice
continuously differentiable nonnegative initial conditions

ci(x, 0) = c0
i (x) ≥ 0, x ∈ Ω, i = 1, . . . , n, (1.8)

and homogeneous Neumann boundary conditions (BCs),

∂
∂ν

ci(x, t) = 0, x ∈ ∂Ω, i = 1, . . . , n, (1.9)
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where ν ∈ Rn is the external normal vector to the boundary δΩ, we get a boundary
value problem, a so-called reaction-diffusion system (RDS) with a solution

c : Ω ×R+ → Rn, (x, t) 7→ c(x, t). (1.10)

We assume that its derivatives
∂c
∂t

and
∂2c
∂x2 are each continuous with respect to x and

t (of course, for t = 0, continuity with respect to t holds from above only). Thus the
solution c itself is continuous with respect to x and t too. We furthermore assume
that it is bounded, that is, there exists a real K ∈ R such that |c(x, t)| < K for all
x ∈ Ω, t ≥ 0. Under certain conditions the existence and uniqueness of a solution to
a RDS as defined above results from standard theorems [15].

After having introduced reaction networks and reaction-diffusion systems we
now briefly outline the contributions of this paper. We call a monotonously increasing
sequence (t j)

∞

j=1 of nonnegative real numbers tending towards infinity with

1 ≤ t j+1 − t j ≤ Z,

j ∈N, for some Z ∈ R+ sequence of points in time. We call a vector

v̂ = v̂(c, (tl)
∞

l=1) ≡ lim
j→∞

1
t j+1 − t j

∫ t j+1

t j

∫
x∈Ω

v(c(x, t)) dx dt ∈ Rm
+ (1.11)

constructed from a single solution c of a RDS by using the sequence (t j)
∞

j=1 a total flux
with respect to c and (t j)

∞

j=1 if

Nv̂ = 0. (1.12)

Thus double-integration of a solution of a RDS connects the dynamics to a property
of the underlying reaction network, namely the stoichiometric matrix. Note that the
total flux is not necessarily a feasible flux for any subset of species. In this work we
focus on the question which of the components v̂ j, j = 1, . . . , m, of the vector v̂ are
strictly positive and which are equal zero. Each of the components, that is strictly
positive, represents a reaction, that is active in the long-run of the solution c of the
RDS. Thus, the components of v̂ with v̂ j > 0 determine, which species must persist
in the long-run to support the respective reactions r j.

In [7] it was shown, that if an ODE system approaches a fixed point, then the set
of persistent species is an organization in the sense of Chemical Organization Theory
(COT). An organization is a subset S ⊆ S of species that is

1. closed, that is, none of the reactions supported by this subset of species produces
a species, that is not contained in this subset,

2. and self-maintaining, that is, there is a feasible flux v̂ ∈ Rm
+ such that N · v̂ ≥ 0.

We will introduce COT in more detail in the Preliminaries. Since we regard bounded
solutions only, all the results of this work concerning the dynamics of RDS hold for
Nv̂ = 0. Solely in section 2.0.1 and in section 3.2 the inequality Nv̂ ≥ 0 is used.

In [42] we have generalized the fixed points result from [7] mentioned above. We
have shown, that whenever the solution of an ODE system approaches an arbitrary
attractor that exhibits only one single subset of persistent species, this subset is an
organization [42]. Such attractors might include periodic or even chaotic behavior.
But we have also cited solutions of reaction-diffusion systems with other types of
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attractors, like for example heteroclinic orbits, that exhibit more than one subset of
persistent species, which are 2distributed with respect to time [41]. We had proven
that for such solutions the minimal subsets of persistent species are organizations
2but we could neither prove that statement for all subsets of persistent species nor
for their union [42].

In this work we generalize the techniques developed for ODE systems in [42] to
comprise reaction-diffusion systems with solutions exhibiting more than one subset
of persistent species, especially systems with spatial extension and diffusion effects,
that is, involving PDEs. We provide simulation results of RDS exhibiting solutions
c with total fluxes v̂ that are not feasible fluxes. Instead, reactions that would be
active for a feasible flux, are inactive. This is due to a temporal or spatial separation
of the persistent species amongst several subsets. We show that neither all of these
subsets nor their union necessarily is an organization in the sense of classical COT. We
therefore generalize the definition of organizations toward distributed organizations
(DOs) to capture the newly identified phenomenon of the persistent species being
distributed. Note, that like organizations, DOs solely depend on the reaction network
underlying the dynamical system. We finally arrive at two main results. First, given
a reaction network, the set of DOs forms a lattice which hierarchically relates the
DOs to one another. Secondly, for every solution of a RDS the set of persistent
species is always a DO of the underlying reaction network. Whereas the first result
provides information about the overall structure of a reaction network the second
one characterizes the inner structure of the set of persistent species with regard to a
single solution of a RDS. We show how connecting these two perspectives supports
reaction network analysis. The overall situation is illustrated in Fig. 1.1.

This paper is organized as follows. In the Preliminaries, we first give a short
overview of Chemical Organization Theory (COT) including the most important
definitions and then discuss the problem of persistence. In the Results we first
state the concept of persistence this work relies on. Then we define distributed
organizations (DOs) and prove that they always form a lattice as one of the two main
results of this work. We discuss the role of closed subsets of species in the dynamics.
Subsequently, as the second main result, we prove that the set of persistent species
with respect to a solution of a RDS is always a DO of the underlying reaction network.
Then we show how to apply the fore-mentioned results to analyze DO lattices and to
draw conclusions about the long-term behavior of RDS. Then we state some remarks
on how to compare several DO lattices and how to put them into hierarchies. Finally,
we present three example simulation results and discuss them with respect to the
theoretical results. In the Conclusions we discuss the results and mention some
directions for future work. In the Supplementary Materials, by lemma 5.0.2, we rank
our definition of persistence by comparing it to a weaker and a stronger definition
often found in literature (see section 2.0.2).
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Lattice of DOs
(Theorem 3.1.1)
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Figure 1.1: Illustration of the relation between a dynamical system
(upper right), its solutions (lower right), its underlying reaction net-
work (upper left), and the lattice of DOs (lower left) of the reaction
network for Example 1 presented in section 3.6.1. Systems of ODEs or
PDEs are built from reaction networks by fixing the derivatives of the
species concentrations according to the reaction rules. Integrating all
the solutions of a dynamical system leads back to the reaction network
and reveals the lattice of DOs. Also notated in the figure, the main
results of this paper: The set of persistent species of every bounded
solution of a RDS is a DO (theorem 3.4.1) and the set of DOs of every
reaction network forms a lattice (theorem 3.2.1). It is shown how the
fact that every potentially persistent set of species is part of the lattice
of DOs allows for studying the interplay of different subsets of species

with regard to their persistence.
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Chapter 2

Preliminaries

2.0.1 Organizations

Chemical Organization Theory (COT) is a branch of reaction network theory which
deals with analyzing reaction networks to understand the behavior of dynamical
systems. In the last decades a lot of properties of reaction networks were proven
to be useful for this purpose. The first steps into that direction were taken by
Feinberg, Horn, and Jackson [12, 25]. They defined terms like deficiency, balance,
and reversibility to draw conclusions about the steady states, their stability, and the
persistence of species in dynamical systems.

Inspired by Fontana and Buss [14], abstract models of autopoiesis [56], autocat-
alytc set evolution [10, 31, 49], and artificial chemistries [2, 29], Dittrich and Speroni d.
F. [7] introduced Chemical Organization Theory in order to describe the time evolu-
tion of complex chemical systems undergoing qualitative transitions in their species
compositions. Given a reaction network as a set of species and a set of reaction rules,
COT identifies a hierarchy of closed and self-maintaining subsets of species, called
organizations [7]. A chemical organization is derived from the rules of the reaction
network [7] and thus is independent of kinetic details, such as rate constants. The
COT approach allows for analyzing, understanding and engineering even complex,
high-dimensional systems by decomposing it into a Hasse diagram of interrelated
organizations. This allows for tracking the qualitative transitions as movements in
the hierarchy of organizations [36, 39, 45]. Furthermore, there is a proven link to
the long-term behavior, that is, all trajectories of the dynamical system converge
to organizations [42, 33]. The approach can be applied in various domains where
models can be formulated as reaction networks, like atmospheric and combustion
chemistry [4], origin of life [24], systems biology [30], ecology [57], cognitive science
[21], complex systems [22], computer science [40], and social sciences [8].

Now we state the basics of COT [13] by first introducing the closure of a subset
of species and then defining organizations.

Definition 2.0.1 (Closure of a subset of species). Given a reaction network (S,R) and a
subset S ⊆ S of species. We define the set operation

clos1(S) ≡ S∪ {si ∈ S : ∃r j ∈ R : supp(r j) ⊆ S, bi j > 0}, (2.1)
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that is, the set of species from S together with all species, that are produced by the reactions,
which are active on S. From this we define a monotonously increasing sequence of sets

clos0
1(S) = S,

clos1
1(S) = clos1(S),

clos2
1(S) = clos1(clos1(S)),

clos3
1(S) = clos1(clos1(clos1(S))),

. . .

closkmin+1
1 (S) = clos1(closkmin

1 (S)),

where kmin = min{k ∈ N0 : closk+1
1 (S) = closk

1(S)}. Since the set of species and the set of
reactions are finite, kmin is finite and thus the closure of S is unique and finite. We call the set

clos(S) ≡ closkmin
1 (S) (2.2)

the closure of S.

For every subset S of species, the closure clos(S) of S does not contain the support
of any reaction, that produces a species, which is not already contained in S. We call
this property, which the closure of any subset of species pertains, closedness property.
Together with self-maintenance, these are the two properties of an organization. We
assume that the set S of all species of a reaction network (S,R) is closed.

Definition 2.0.2 (Closedness, self-maintenance and organizations). Given a reaction
network (S,R) and a subset S ⊆ S of species then we call S

1. self-maintaining if there is a feasible flux v with respect to S such that

N · v ≥ 0, (2.3)

that is, all elements of N · v are zero,

2. closed if

clos(S) = S, (2.4)

3. organization if it is self-maintaining and closed.

Spatial effects are crucial to systems of Partial Differential Equations (PDEs) par-
ticularly reaction-diffusion systems that are widely used in Biosciences, for example
in virus dynamics [48, 35, 32, 50] as well as DNA segregation and cell division [9,
28, 34, 19, 28, 27, 26]. So far there is only one work combining COT and spatial
effects [44]. In that work it is shown how different boundary conditions of RDS can
be incorporated into COT analysis by adapting reaction networks appropriately. In
this paper we bridge the remaining gap between COT and spatial systems.

2.0.2 Persistence

Persistence comprises various ideas from different fields, for example ecology, chem-
istry, and biology. It is applied to a huge multitude of different model types like for
example, discrete and continuous models, ODE and PDE models, deterministic or
stochastic models, models having a spatial dimension or not, and so on. As for all
these types of models, for the reaction-diffusion systems discussed in this work ,
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there are a lot of different terms related to persistence, such as permanence [23, 41, 6,
3], coexistence [20, 41], extinction [1, 20], strong persistence [1], uniform persistence
[20] etc. For an overview of these concepts we refer the reader to [23, 1] e.g. There are
many aspects of persistence regarding dynamical systems. For example, persistence
can be analyzed with regard to a single species or a whole system of species. Also,
persistence concerning a single solution and all possible solutions of a RDS arising
from different initial conditions or reaction constants can be distinguished. Further-
more, there are different grades of persistence, named by terms like weak or strong
persistence. In this work we concern the subsets of persistent species with regard to
a single solution of a RDS and link it with the persistence regarding the whole of all
solutions of any RDS with the same underlying reaction network.
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Chapter 3

Results

3.1 Persistence

In this subsection we present the concept of persistence on which this study relies. For
this purpose we first define two kinds of neighborhoods, which are special subsets
of the state space of concentration vectors. We also define a frequency of occurrence
for any subset of the state space and, based on that, we introduce persistent subsets
of species. From the persistence of a subset of species we derive the persistence
of a species, which we analyze further and compare to other grades of persistence
based on the limits superior and the limits inferior of the concentration values of that
species. In this subsection, we assume that the solution ci(x, t) of an RDS introduced
in Section 1 is nonnegative for all t > 0, x ∈ Ω, si ∈ S. We will prove this in Section 3.3.

Definition 3.1.1 (Neighborhood of a subset of species in the space of concentrations).
Given a subset S ⊆ S of species and real numbers ε, δ > 0, we call the set

Sε,δ ≡ {c ∈ Rn
+ : cs

> ε iff s ∈ S
≤ δ iff s < S

} ⊆ Rn
≥0 (3.1)

of concentration vectors the (ε, δ)-neighborhood of S, and for δ = ∞ we call the set

Sε ≡ Sε,∞ ≡ {c ∈ Rn
+ : cs > ε iff s ∈ S} ⊆ Rn

≥0 (3.2)

of concentration vectors the ε-neighborhood of S.

There are lower and upper boundaries for the flux vector function values v(c)
depending on whether or not c is in some special ε-neighborhoods. The following
remark provides these boundaries, which we need to prove the results of this work.

Remark 3.1.1 (Boundaries of the fluxes). Given an RDS with underlying reaction network
(S,R), a reaction r j ∈ R for a j ∈ {1, . . . , m}, and a subset S ⊆ S of species, the following
hold:

• If supp(r j) ⊆ S then for all ε > 0 there is a lower boundary L(ε) > 0 for the flux
vectors v j(c) such that

0 < L(ε) < v j(c) (3.3)

for all c ∈ Sε.

• If supp(r j) ⫅̸ S then for all ε > 0 there is an upper boundary U(ε) > 0 for the flux
vectors v j(c) such that

0 ≤ v j(c) ≤ U(ε) ⇔ c < support(r j)
ε (3.4)
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c2

c1
0 ϵ

δ
F( {s1}

ϵ,δ )

F( {s1,s2}
ϵ,δ )

F( {s1}
ϵ )   =   F( {s1}

ϵ,δ )        F( {s1,s2}
ϵ,δ )

 
Figure 3.1: [46] Illustration of Remark 3.1.2 for an example with two
species s1 and s2. The ε-environment of {s1} is a disjoint union of the

(ε, δ)-environments of {s1} and {s1, s2}.

and limε→0 U(ε) = 0.

Proof. The proof follows from the definition of the flux vector function v() in the
introduction, that is, its continuity and feasibility property, and from the definitions
of neighborhoods in Definition 3.1.1. □

Remark 3.1.2 (Disjoint decomposition of ε-neighborhoods). Given a reaction network
(S,R), a subset S̃ ⊆ S of species, and real numbers ε, δ > 0. Then the ε-environment S̃ε of
S̃ is a disjoint union of (ε, δ)-environments Sε,δ of all subsets S ⊆ S of species with S̃ ⊆ S.
That is,

S̃ε =
⊎
S̃⊆S

Sε,δ. (3.5)

This holds true especially for ε = δ.

This is illustrated in Figure 3.1. Definition 3.1.2 is a pre-stage to persistence and
shows the strong relation to the construction of the vector v̂ sketched in Equation 1.11.

Definition 3.1.2 (Frequency of occurrence of concentration vectors). Given a solution
c of an RDS, a subset C ⊆ Rn

+ of the set of concentration vectors, and a sequence (t j)
∞

j=1 of
points in time, we call the nonnegative number

F(C; c, (t j)
∞

j=1) ≡ lim sup
l→∞

1
t j+1 − t j

∫ t j+1

t j

∫
{x∈Ω: c(x,t)∈C}

dx dt (3.6)

the frequency of occurrence of C (with respect to c and (t j)
∞

j=1) and write for short F(C) if it
is clear to which solution c and which sequence (t j)

∞

j=1 it relates.

Now we state the main definition of persistence regarding a single solution c of
an RDS.

Definition 3.1.3 (Persistent subsets of species and persistent species). Given a solution
c of an RDS with an underlying reaction network (S,R), we call a subset S ⊆ S of species
persistent (with respect to c) if for all sequences (t j)

∞

j=1 of points in time there is an ε > 0
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S1
S3

S2

S1, S2, S3: persistent 
subsets of species

gray background: 
persistent species

set of all species

Figure 3.2: [46] Overview of the terms regarding persistence as de-
fined and used in this work.

such that for all δ > 0 the frequency of occurrence F(Sε,δ) of Sε,δ with respect to c and (t j)
∞

j=1
is strictly positive, that is,

F(Sε,δ) = lim sup
j→∞

1
t j+1 − t j

∫ t j+1

t j

∫
{x∈Ω: c(x,t)∈Sε,δ}

dx dt > 0. (3.7)

We denote the set of persistent subsets of species P(c), i.e.,

P(c) ≡ {S ⊆ S : S is persistent with respect to c}. (3.8)

We call a single species s ∈ S persistent (with respect to c) if s is contained in at least one of
the persistent subsets of species, i.e.,

s ∈ ∪{S ⊆ S : S ∈ P(c)}. (3.9)

We say that a species s ∈ S goes extinct (with respect to c) if it is not persistent with respect
to c. We denote the set of persistent species Φ(c), i.e.,

Φ(c) ≡ {s ∈ S : s is persistent with respect to c} = ∪{S ⊆ S : S ∈ P(c)}. (3.10)

See Figure 3.2 for an illustration of the concept of persistence introduced above. It
is important to note that Definition 3.1.3 draws a clear distinction between the species
within a persistent set S and those outside of S. More precisely, a strictly positive
frequency of occurrence of S not only demands the co-occurrence of the species from
S but also the simultaneous disappearance of the species that are not elements of S.
Our second simulation example in Section 3.6.2 illustrates this clearly, since there we
have an RDS with solution c with a set P(c) = {{s1}, {s2}, {s3}, {s1, s2}, {s1, s3}, {s2, s3}} of
persistent subsets of species. But the set S = {s1, s2, s3} of all species is not persistent
even though it contains persistent species.

Whereas in Definition 3.1.3 we derived the persistence of a single species from the
persistence of subsets of species, in Lemma 3.1.1 we provide an immediate criterion
for the persistence of a single species.
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Lemma 3.1.1 (ε-neighborhood criterion for persistent species). Given a solution c of a
RDS with an underlying reaction network (S,R), a species si ∈ S is persistent with respect
to c, that is,

si ∈ Φ(c) = ∪S∈P(c)S (3.11)

if and only if for all sufficiently small ε > 0 and every sequence (t j)
∞

j=1 of points in time the
frequency F({si}

ε) of occurrence of {si}
ε is strictly positive, that is,

F({si}
ε) ≡ lim sup

l→∞

1
tl+1 − tl

∫ tl+1

tl

∫
{x∈Ω: ci(x,t)>ε}

dx dt > 0. (3.12)

Proof. 1. First we prove that Equation 3.12 follows from si ∈ Φ(c). Thus, we
assume, that si is persistent, that is, there is a persistent subset S ∈ P(c) with
si ∈ S. Thenfor all sequences (t j)

∞

j=1 of points in time there is an ε > 0 such that
for all δ > 0,

F(Sε,δ) = lim sup
j→∞

1
t j+1 − t j

∫ t j+1

t j

∫
{x∈Ω: c(x,t)∈Sε,δ}

dx dt > 0, (3.13)

and so

0 < F(Sε,δ)

= lim sup
j→∞

1
t j+1 − t j

∫ t j+1

t j

∫
{x∈Ω: c(x,t)∈Sε,δ}

dx dt

≤ lim sup
j→∞

1
t j+1 − t j

∫ t j+1

t j

∫
{x∈Ω: c(x,t)∈Sε}

dx dt

≤ lim sup
j→∞

1
t j+1 − t j

∫ t j+1

t j

∫
{x∈Ω: c(x,t)∈{si}ε}

dx dt

= lim sup
j→∞

1
t j+1 − t j

∫ t j+1

t j

∫
{x∈Ω: c(x,t)>ε}

dx dt. (3.14)

From Definition 3.1.2 it follows that F({si}
ε) > 0 for all sufficiently small ε > 0.

2. Now we prove the other direction, that is, we assume that there is an ε > 0
such that for every sequence (t j)

∞

j=1 of points in time, Equation 3.12 holds true.
So for all δ > 0,

0 < F({si}
ε)

Remark 3.1.2
= F(

⊎
si∈S

Sε,δ)

=
∑
si∈S

F(Sε,δ). (3.15)

Since the sum is finite, there is a subset S ⊆ S of species with F(Sε,δ) > 0 and
si ∈ S. Thus S is persistent, and the proof is completed.

□

In chapter 5 we provide Lemma 5.0.2 and Lemma 5.0.1. The latter is necessary to
prove the former, and Lemma 3.1.1 is needed for the proofs of both. Both Lemma 5.0.2
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and Lemma 5.0.1 are not necessary to prove the main results of this work. But
Lemma 5.0.2 helps in assessing our concept of persistence of a species as defined
in Definition 3.1.3 by comparing it to two other types of persistence which can be
derived from the concentration values of a species as well. Briefly, Lemma 5.0.2 states
that for a given solution c of an RDS with an underlying reaction network (S,R) and
an arbitrary species si ∈ S, the following two conclusions hold:

lim inf
t→∞

∫
x∈Ω

ci(x, t) dx > 0 ⇒ si is persistent w.r.t. c ⇒ lim sup
t→∞

∫
x∈Ω

ci(x, t) dx > 0.

(3.16)

This shows that our concept of persistence can be regarded as a refinement
of other definitions of persistence. Mincheva and Siegel [37], by using so-called
Volpert indices, proved for an RDS with mass-action kinetics the nonnegativity of all
concentrations of all species for all finite times. They also proved the positiveness
of the concentration of all reachable species. The set of reachable species is what is
called closure in COT. The Volpert indices correspond to the indices k in the notation
of the sets closk

1(S), i ∈N, that we used in Definition 2.0.1 of this work. In Section 3.3
of this study we prove for more general kinetics that the set of species existent
at a location of the domain at an arbitrary time immediately produces its closure.
Furthermore, we complement the results from [37] in Section 3.4 by identifying those
subsets of species, that persist for time approaching infinity. We show that they are
special substructures of the underlying reaction networks of the RDS which we call
DOs and define in Section 3.2. Note, that if the reaction network is not given, one
can derive it from the RDS or the ODE system. This is exemplified in [43], Fig. 1.
More details about the relation between differential equations and their underlying
reaction networks can be found in [53, 11].

3.2 Distributed Organizations

In this subsection we first define DOs as a generalization of organizations and then
compare these two terms. After proving that computing DOs is NP-hard, we prove
that the set of all DOs of a reaction network forms a lattice.

A DO consists of one or more subsets of species that are each closed and together
obey a generalized kind of self-maintenance. We now present a precise definition.

Definition 3.2.1 (Distributed organizations (DOs)). Given a reaction network (S,R), a
subset D ⊆ S is a DO if and only if there are k, k ∈N, different subsets S1, . . . , Sk ⊆ D with

D = ∪k
i=1Si (3.17)

such that

1. all Si, i = 1, . . . , k, are closed;

2. there is a vector v̂ ∈ Rm
+, v̂ ≥ 0, such that

Nv̂ ≥ 0; (3.18)
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All subsets of species

Distributed 
Organizations

Organizations

Figure 3.3: [46] Illustration of the relation between organizations and
distributed organizations.

3. and there is a feasible flux v̂i
∈ Rm

+, v̂i
≥ 0, with respect to each subset Si, i = 1, . . . , k,

with

v̂ =
k∑

i=1

v̂i. (3.19)

Collectively, we call the second and third items of the list above the self-maintenance property
of a DO. We say "D is distributed to the Si" or "the Si are a distribution of D". When listing
the elements of the subsets Si, i = 1, . . . , k, of species, we use a special notation, for example,
if D is distributed to S1 = {s1, s2} and S2 = {s1, s3}, we write

D = S1 ∪ S2 = {s1s2|s1s3}. (3.20)

Note that a species can be contained in several subsets Si, i = 1, . . . , k, of a DO, and
a DO can be empty. The next lemma elucidates the relation between organizations
and DOs. The situation is illustrated in Figure 3.3.

Lemma 3.2.1 (Relation of organizations and DOs).

1. Every organization of a reaction network (S,R) is a DO of that reaction network.

2. Every DO of a reaction network (S,R) that has a distribution to a single subset that
is k = 1 in Definition 3.2.1 is an organization.

3. There exist reaction networks that exhibit DOs that are not organizations.

Proof. 1. Let O be an organization of a reaction network (S,R). Then O is a DO
that is distributed to a single subset S1 = O, since O is closed and, furthermore,
self-maintaining both, in the way organizations are self-maintaining and in the
way DOs are self-maintaining.

2. This follows from the previous item.

3. Let S ≡ {s1, s2} and R ≡ {r1 : s1 + s2 → ∅} be the set of species (resp., reactions)
of the reaction network (S,R). Then D ≡ {s1|s2} is a DO but not an organization.

□

Remark 3.2.1 (DOs not being organizations). Assume a DO D = {S1|S2| . . . |Sk} with
v̂ =

∑k
i=1 v̂i such that Nv̂ = 0 and v̂i, i = 1, . . . , k, are feasible fluxes with respect to the

subsets Si, i = 1, . . . , k.
If ∪k

i=1Si is closed and self-maintaining, then D is an organization. This is especially
the case if there is no reaction r j ∈ R with supp(r j) ⊆ ∪

k
i=1Si but supp(r j) ⫅̸ Si for all
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i = 1, . . . , k, since in this case v̂ from above is a feasible flux with respect to∪k
i=1Si and∪k

i=1Si
is closed because all the Si, i = 1, . . . , k, are closed.

On the other hand, if there is a reaction r j ∈ R with supp(r j) ⊆ ∪
k
i=1Si but supp(r j) ⫅̸ Si

for all i = 1, . . . , k, then v̂ is not a feasible flux with respect to ∪k
i=1Si since v̂ j = 0. Such a

reaction can

1. produce new species that are not contained in ∪k
i=1Si, and then ∪k

i=1Si is not closed;

2. prevent ∪k
i=1Si from being self-maintaining; or

3. do both.

In any of the cases 1–3 ∪k
i=1Si is not an organization.

Corollary 3.2.1 (Complexity of the computation of DOs). The computation of DOs is
NP-hard.

Proof. In [4] it was proven that deciding whether a given reaction network contains a
reactive organization is NP-complete and thus that computing organizations is NP-
hard. This was done by constructing a reaction network containing an organization
such that finding that organization is equivalent to the 3-SAT problem. Since we
know from Lemma 3.2.1 that every organization is a DO, the proof from [4] works
for DOs too. □

For more information about the complexity of relevant subsets of species in a
reaction network the reader is referred to [58]. The next lemma is the first part of a
sequence of statements culminating in a theorem about the lattice property of the set
of DOs of a given reaction network.

Lemma 3.2.2 (Existence of a unique smallest organization). For every reaction network
(S,R) there is a unique smallest DO Omin, which is an organization. That is, Omin is a
subset of any other DO of that reaction network. For any DO D = {S1| . . . |Sk}, Omin is even
a subset of all Si. Note, that Omin might be empty.

Proof. We define

Omin ≡ clos(∅); (3.21)

then Omin is closed. Furthermore, since Omin is produced from the empty set ∅, it is
a subset of all Si, i = 1, . . . , k, for any DO D = {S1| . . . |Sk}. Thus, to prove that Omin is
an organization, it remains to prove, that there is a feasible flux v̂ ∈ Rm

+ with respect
to Omin with Nv̂ ≥ 0. With kmin ∈ N0 from Definition 2.0.1, we define the vector
v̂kmin ∈ Rm

+ by

v̂kmin
j


= 1, iff supp(r j)∩ closkmin

1 (∅) , ∅,
= λkmin, j, iff supp(r j) ⊆ closkmin−1

1 (∅) and
ai j = 0, bi j > 0 for a species si ∈ closkmin

1 \ closkmin−1
1

= 0, otherwise,

(3.22)

for j = 1, . . . , m, and by strictly positive real numbers λkmin, j, such that

(Nv̂kmin)i ≥ 0∀ si ∈ closkmin
1 (∅) \ closkmin−1

1 (∅). (3.23)
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Then for k from kmin − 1 stepwise decreasing by 1 to k = 1, we construct the vectors
v̂k
≡ v̂k+1 + ∆v̂k

∈ Rm
+ by adding to v̂k the vector ∆v̂k defined by

∆v̂k
j =



1, iff supp(r j) ⊆ closk
1(∅) and

ai j > 0 for all species si ∈ closk
1 \ closk−1

1
λk, j, iff supp(r j) ⊆ closk−1

1 (∅) and
ai j = 0, bi j > 0 for a species si ∈ closk

1 \ closk−1
1

0, otherwise,

(3.24)

for j = 1, . . . , m, and by strictly positive real numbers λk, j, such that

(Nv̂k)i ≥ 0∀ si ∈ closk
1(∅) \ closk−1

1 (∅) (3.25)

and so

(Nv̂k)i ≥ 0∀ si ∈ closkmin
1 (∅) \ closk−1

1 (∅). (3.26)

Finally, by defining v̂ ≡ v̂1 we obtain a feasible flux with respect to clos(∅) such that

(Nv̂k)i ≥ 0∀ si ∈ clos(∅), (3.27)

that is, Omin is self-maintaining and thus an organization. □

Note that this subsection and Section 2.0.1 are the only parts of this section where
it is necessary to define self-maintenance of organizations and DOs by the inequality
Nv̂ ≥ 0 instead of the equation Nv̂ = 0. The rest of this section indeed still holds true
if the inequality Nv̂ ≥ 0 in the definitions of organizations and DOs is replaced by
the equation Nv̂ = 0. Thus, all results of this section dealing with organizations or
DOs with regard to the dynamics of RDSs are, strictly speaking, not formulated in
their strongest possible forms.

Lemma 3.2.3 (Union of DOs). Given a reaction network (S,R) and two DOs D1, D2 ∈ S,
the union D1 ∪D2 is also a DO.

Proof. Let D1 = {S1| . . . |Sk} and D2 = {T1| . . . |Tl} be DOs with closed subsets Si, T j ⊆

D1, i = 1, . . . , k, j = 1, . . . , l, of species and let their feasible fluxes be v̂i, ˆ̂v j, i =

1, . . . , k, j = 1, . . . , l, such that N
∑k

i=1 v̂i = 0 and N
∑l

j=1
ˆ̂v j = 0.

Then D ≡ D1 ∪D2 with the distribution D ≡ {S1| . . . |Sk|T1| . . . |Tl}, i = 1, . . . , k, j =
1, . . . , l, is a DO, since N(

∑k
i=1 v̂i +

∑l
j=1

ˆ̂v j) = N
∑k

i=1 v̂i + N
∑l

j=1
ˆ̂v j = 0. □

Note that the union of two DOs as constructed in Lemma 3.2.3 is always a DO
but not necessarily an organization. The next lemma complements Lemma 3.2.2.

Corollary 3.2.2 (Existence of a unique biggest DO). Given a reaction network (S,R)
and a subset S ⊆ S of species with Omin ⫅ S for Omin from Lemma 3.2.2, the union

Dmax(S) ≡ ∪{D ⊆ S : D is a DO} (3.28)

of all DOs contained in S is the unique biggest DO contained in S in the sense that all other
DOs contained in S are subsets of Dmax(S).

Proof. Let S ⫅ S be an arbitrary closed subset of species. It follows from Lemma 3.2.3
that Dmax(S) is a DO.From lemma 3.2.2 it follows that the union is never empty, since it
always contains the smallest organization Omin ≡ clos(∅) of the reaction network. □
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Based on the previous results, the next theorem states the lattice property of the
set of DOs of a reaction network.

Theorem 3.2.1 (Lattice property of DOs). Given a reaction network (S,R) the set of its
DOs forms a lattice.

Proof. According to the subarea of mathematics called order theory, a lattice is a
partially ordered set in which every two elements have a unique supremum and a
unique infimum Therefore, the set of DOs is a lattice if the following three conditions
hold:

1. Partial order of the set of DOs: The subset relation for sets provides a partial
order.

2. Unique supremum: Given two DOs D1, D2 ⊆ S, following Lemma 3.2.3, a unique
supremum is given by the set union

Dsup ≡ D1 ∪D2. (3.29)

3. Unique infimum: Given two DOs D1, D2 ⊆ S of the reaction network we take
the union of all DOs in D1 ∩D2 as the infimum, that is,

Din f ≡ Dmax(D1 ∩D2) = ∪{D ⊆ D1 ∩D2 : D is a DO}. (3.30)

The existence of Din f follows from Corollary 3.2.2.

□

Summarizing, we visualize the previous statements in Figure 3.4. Note that
besides the lattice of DOs, also the set of all subsets of species forms a lattice by
taking set union and set intersection as supremum and infimum, respectively. Thus
the lattice of DOs can be embedded as a subset into the lattice of all subsets of species.
In contrast, the set of organizations and the set of all closed subsets of species are not
lattices in general.

We derive Corollary 3.2.3 from Theorem 3.2.1.

Corollary 3.2.3 (Lattice criterion for DOs). Given a reaction network (S,R), if the Hasse
diagram of organizations is not a lattice, then there exists at least one DO that is not an
organization.

Proof. Since by Lemma 3.2.1 every organization is a DO, the set of organizations of
the Hasse diagram must be a proper subset of the set of DOs if the Hasse diagram of
organizations is not a lattice. □

We conclude this subsection by providing an example reaction network, which
is visualized in Figure 3.5 together with its lattice of DOs. The lattice contains five
DOs that are all organizations. Note that the biggest DO S = {s1, s2, s3} exhibits
different distributions, for example, one for which it is distributed to only one subset
S of species and another for which it is distributed to two subsets S1 = {s1, s2} and
S2 = {s2, s3} of species. But the two different distributions share the same total fluxes,
since no reaction is deactivated by distributing the species.
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Dmax

Dsup

. . .. . . D1 D2

Din f

Dmin

Figure 3.4: [46] Visualization of the lattice property of the set of DOs
(that were proven in Theorem 3.2.1) of a given reaction network.

r1 : s1 → s2

r2 : s1 + s2 → 2s1

r3 : s2 + s3 → s2 + 2s3

r4 : s3 → ∅

(a) Reactions

s1s2|s2s3
s1s2s3

s2s3s1s2

s2

∅

(b) (Distributed) organizations

Figure 3.5: [46] An example reaction network pertaining to five dif-
ferent DOs. The vertical bar in the uppermost DO represents the fact
that this DO can be distributed to two different subsets of species such

that the species s1 and s3 are separated from each other.

3.3 The role closedness plays in the dynamics

In this subsection we first derive some statements about the effects of the diffusion
term appearing in the RDS and prove the nonnegativity of any solution of a RDS.
Then we show that for any time and any location the closure of the species existing
there leads to the immediate production of the closure of these species. Finally we
prove the first part of the main result of this work, that it, that a subset of species that
is persistent with respect to a solution of an RDS is always closed.

Remark 3.3.1 (Nonnegative diffusion for concentration equal zero). Given the solution
c of an RDS with the underlying reaction network (S,R), a species si ∈ S, a time t0 ≥ 0,
and a location x0 ∈ Ω, the following conclusion holds:

ci(x0, t0) = 0 and ci(x, t0) ≥ 0∀x , x0 ⇒
∂2ci

∂x2 (x0, t0) ≥ 0. (3.31)

Proof. For readability we assume Ω ⊆ R, since the proof for Ω ⊆ Rp for p > 1 can be
deduced easily. Furthermore, we assume that x0 ∈ Ω is an element of the interior of
Ω, since in the case x0 ∈ δΩ, the proof holds for the one-sided derivatives too.
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From ci(x0, t0) = 0 and ci(x, t0) ≥ 0 for all x , x0 it follows that

∂2ci

∂x2 (x0, t0) = lim
h→0

ci(x0 + h, t0) − 2ci(x0, t0) + ci(x0 − h, t0)

h2

= lim
h→0

ci(x0 + h, t0) + ci(x0 − h, t0)

h2 ≥ 0. (3.32)

□

Now we prove the nonnegativity of the solutions of an RDS.

Lemma 3.3.1 (Nonnegativity of the solution of a RDS). Given the solution c of an RDS
with the underlying reaction network (S,R), c is nonnegative, that is,

ci(x, t) ≥ 0 ∀si ∈ S, t ≥ 0, x ∈ Ω. (3.33)

Proof. The proof is by contradiction. Therefore we assume that the supremum

t̃ ≡ sup{t ≥ 0 : ci(x, t) ≥ 0 ∀si ∈ S, x ∈ Ω} (3.34)

is finite, that is, 0 ≤ t̃ < ∞. Since c is continuous, there is a location x̃ ∈ Ω and an
i ∈ {1, . . . , n} such that for the concentration of the species si ∈ S it holds that

ci(x̃, t)


≥ 0 : t ≤ t̃,
= 0 : t = t̃,
< 0 : for all sufficiently small t > t̃.

(3.35)

and ci(x, t̃) ≥ 0 for all x ∈ Ω. From Remark 3.3.1 it follows that
∂2ci

∂x2 (x̃, t̃) ≥ 0, and

thus

∂ci

∂t
(x̃, t̃) = N · v(c(x̃, t̃)) +

∂2ci

∂x2 (x̃, t̃)

≥ N · v(c(x̃, t̃))
ci(x̃,t̃)=0
≥ 0. (3.36)

The last inequality holds true, since when ci = 0 there is no reaction that can consume
the species si since v() is defined to be a flux vector function. The resulting inequality
∂ci

∂t
(x̃, t̃) ≥ 0 contradicts ci(x̃, t) < 0 for all sufficiently small t > t̃, that is, the third

case of 3.35. Thus the assumption is false and the solution of an RDS is nonnegative
for all t ≥ 0 and x ∈ Ω and all species. □

From Lemma 3.3.1 and Remark 3.3.1 we easily derive the following corollary.

Corollary 3.3.1 (Nonnegative diffusion for concentration equal zero). Given the solu-
tion c of an RDS with underlying reaction network (S,R), a species si ∈ S, a time t0 ≥ 0,
and a location x0 ∈ Ω, the following conclusion holds

ci(x0, t0) = 0⇒
∂2ci

∂x2 (x0, t0) ≥ 0. (3.37)

Next we state another result about diffusion we use in this work.
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Remark 3.3.2 (Integral over the divergence equals zero). Given the solution c of an
RDS with the underlying reaction network (S,R) and a time t0 ≥ 0, for every species
si ∈ S, i = 1, . . . , n, it holds that ∫

Ω

∂2ci

∂x2 (x, t0) dx = 0. (3.38)

Proof. From the divergence theorem, also referred to as Gauss’s theorem we know
that ∫

Ω

∂2ci

∂x2 (x, t0) dx =

∫
δΩ

∂ci

∂ν
(x, t0) dx (3.39)

and the term on the right-hand side of this equation equals zero, since we apply
homogeneous Neumann boundary conditions (see Section 1). □

From Remark 3.3.2 it follows that the diffusion does not change the total integral
over the concentration values of the species, but, instead, the total concentration
value of each species is determined solely by its interactions with the other species
via the reactions. In [44] we have outlined, how the set of reactions is to be modified
according to the boundary conditions applied, to return the right set of organizations
and DOs of the reaction network. For homogeneous Neumann boundary conditions
we had seen, that the set of reactions needs not to be changed and this result is
confirmed by Remark 3.3.2.

Next we state a lemma necessary to prove the two main results of this subsection
about closedness.

Lemma 3.3.2 (Production of the closure). Given a solution c of an RDS with underlying
reaction network (S,R), a subset S ⊆ S, a location x0 ∈ Ω, a time t0 > 0, and an ε > 0 such
that for all species si ∈ S it holds that

ci(x0, t0) > ε, (3.40)

then

c j(x0, t0) > 0 (3.41)

for all s j ∈ clos(S).

Proof. By assumption there is an ε > 0 with ci(x0, t0) > ε for every si ∈ S. We prove
this by contradiction. To this end we assume that there is a species s j ∈ clos(S) with
c j(x0, t0) = 0. For readability we assume s j ∈ clos1(S), since from this case the proof
can easily be transferred to the cases s j ∈ closk

1, k > 1. From s j ∈ clos1(S) it follows
that there is a reaction rk ∈ R with supp(rk) ⊆ S, that produces s j, that is, a jk = 0 and
b jk > 0 and thus n jk > 0. Due to the continuity of the involved functions, there is a
δ > 0 such that

• f+(c(x0, t)) ≡
∑

k: n jk>0 n jk · vk(c(x0, t)) > ε/2,

• f−(c(x0, t)) ≡
∑

k: n jk<0 n jk · vk(c(x0, t)) < −ε/8, and

• d j
∂2c j

∂x2 (x0, t) > −ε/8
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for all t ∈ (t0 − δ, t0 + δ). Thus, contrary to the assumption, we arrive at

c j(x0, t0) = c j(x0, t0 − δ) +

∫ t0

t0−δ
f+(c(x0, t)) + f−(c(x0, t)) + d j

∂2c j

∂x2 (x0, t) dt > δ
ε
4
> 0,

(3.42)

which finishes the proof. □

Lemma 3.3.2 allows for proving our first main result about closedness with regard
to the solutions c of an RDS. For ODEs, it was already proven in lemma 4 in [42].

Lemma 3.3.3 (Instant appearance of the closure). Given the solution c of an RDS with
an underlying reaction network (S,R) and a location x ∈ Ω the following hold:

1. For all times t > 0, the set of species ϕ(c(x, t)) with strictly positive concentration is
closed.

2. For sufficiently small times t > 0, the set of speciesϕ(c(x, t)) with strictly positive con-
centration contains the closure of the setϕ(c(x, 0)) of species with initial concentration
strictly positive, that is,

ϕ(c(x, t)) ⫆ clos(ϕ(c(x, 0))). (3.43)

Proof. 1. The closedness ofϕ(c(x, t)) for any t > 0 follows directly from lemma 3.3.2.

2. Because of the continuity of c with respect to t, we know that for sufficiently
small times t > 0,

ϕ(c(x, t)) ⫆ ϕ(c(x, 0)), (3.44)

and thus with lemma 3.3.2 it follows that

ϕ(c(x, t)) ⫆ clos(ϕ(c(x, 0))). (3.45)

□

We learn from lemma 3.3.3 that the immediate production of the closure of an ini-
tially present but not closed set of species is an intrinsic phenomenon of all solutions
of any RDS. In the following we focus on the dynamics in the long-run. We prove
that a persistent subset S ∈ P(c) of species is always closed. In the next subsection, to
complement this result, we prove that the set Φ(c) of persistent species with respect
to c always fulfills the self-maintenance property of a DO.

Lemma 3.3.4 (Persistent subsets of species are closed). Given a solution c of an RDS
with the underlying reaction network (S,R), every persistent subset S ∈ P(c) of species is
closed.

Proof. We prove this by contradiction. Therefore we assume that there is a persistent
subset S ∈ P(c) of species that is not closed. From lemma 3.3.2 it follows that for
every ε > 0 there is a δ0 > 0 such that for all concentration vectors c ∈ Rn

+ and all
δ ∈ (0, δ0), x ∈ Ω, t ≥ 0, it holds that

c(x, t) ∈ Sε ⇒ c(x, t) < Sε,δ. (3.46)
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Thus the set {(x, t) ∈ Ω× (0,∞) : c(x, t) ∈ Sε,δ} is empty for all ε > 0 and all sufficiently
small δ > 0, so the frequency F(Sε,δ) is zero and S is not persistent in contradiction
to the assumptions of this lemma. □

3.4 DOs and persistence

In this subsection we state the second main result of this work, that is, that the set
Φ(c) of persistent species with respect to a solution c is always a DO. After having
shown the closedness of each element of P(c) in the previous subsection, it remains
to prove self-maintenance. We do this in two steps:

• First, in Lemma 3.4.1 we construct from the solution c of the RDS a total flux
v̂ ∈ Rm

≥0 with respect to c with N · v̂ ≥ 0.

• Then, in Lemma 3.4.2 we show that there is a feasible flux with respect to each
of the persistent subsets S ∈ P(c) of species and that the sum of these feasible
fluxes equals the total flux v̂ constructed in Lemma 3.4.1.

Thereafter we transfer the result to initial value problems based on ODEs. Further-
more, given an organization, we present a way to construct an RDS with a (constant
with respect to x) solution c such that the set Φ(c) of persistent species equals that
organization.

Lemma 3.4.1 (Construction of a vector proving self-maintenance). Given a solution c
of an RDS with underlying reaction network (S,R), there is a sequence (tl)

∞

l=1 of points in
time such that the total flux

v̂ ≡ lim
l→∞

1
tl+1 − tl

∫ tl+1

tl

∫
x∈Ω

v(c(x, t)) dx dt ∈ Rm
≥0 (3.47)

with respect to c and (tl)
∞

l=1 fulfills

N · v̂ ≥ 0. (3.48)

Proof. Since

cΩ(t) ≡
∫

x∈Ω
c(x, t) dx (3.49)

is bounded by assumption, it has at least one accumulation point c̃ ∈ Rn
+. Thus there

is a sequence (t j)
∞

j=1 of points in time such that

lim
j→∞

cΩ(t j) = c̃ (3.50)
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and so

0
(3.50)
= lim

j→∞
(cΩ(t j+1) − cΩ(t j))

(3.49)
= lim

j→∞
(

∫
x∈Ω

c(x, t j+1) dx−
∫

x∈Ω
c(x, t j) dx)

= lim
j→∞

∫
x∈Ω

c(x, t j+1) − c(x, t j) dx

= lim
j→∞

∫
x∈Ω

∫ t j+1

t j

ċ(x, t) dt dx

≥ lim
j→∞

1
t j+1 − t j

∫
x∈Ω

∫ t j+1

t j

ċ(x, t) dt dx

(1.7)
= lim

j→∞

1
t j+1 − t j

∫
x∈Ω

∫ t j+1

t j

Nv(c(x, t)) +
∂2c(x, t)
∂x2 · (d1, . . . , dn)

T dt dx

= lim
j→∞

1
t j+1 − t j

[∫
x∈Ω

∫ t j+1

t j

Nv(c(x, t)) dt dx

+

∫
x∈Ω

∫ t j+1

t j

D
∂2c(x, t)
∂x2 dt dx

]
= lim

j→∞

1
t j+1 − t j

[∫ t j+1

t j

∫
x∈Ω

Nv(c(x, t)) dt dx

+

∫ t j+1

t j

∫
x∈Ω

∂2c(x, t)
∂x2 · (d1, . . . , dn)

T dx

=0 (remark 3.3.2)

dt
]

= lim
j→∞

1
t j+1 − t j

[∫ t j+1

t j

∫
x∈Ω

Nv(c(x, t)) dt dx
]

= lim
j→∞

N ·
1

t j+1 − t j

[∫ t j+1

t j

∫
x∈Ω

v(c(x, t)) dt dx
]

= N · lim
l→∞

1
tl+1 − tl

∫ t j+1

t j

∫
x∈Ω

v(c(x, t)) dt dx

≡v̂, v̂≥0

,

where D ∈ Rn×n denotes the Fickian diffusivity matrix, which in this work is assumed
to be a diagonal matrix containing the diffusion rates di, i = 1, . . . , n, on its diagonal.
Thus there is a subsequence (tl)

∞

l=1 of (t j)
∞

j=1 such that the total flux

v̂ ≡ lim
l→∞

1
tl+1 − tl

∫ tl+1

tl

∫
x∈Ω

v(c(x, t)) dt dx (3.51)

with respect to c and (tl)
∞

l=1 exists, because the flux vector function v() is by as-
sumption Lipschitz continuous on every bounded subset of Rn

+, and c is bounded
by assumption too, and thus v() is bounded for all x ∈ Ω, t ≥ 0. □

Next we prove that the vector v̂ obtained in Lemma 3.4.1 can be written as a sum
of feasible fluxes with respect to the persistent subsets of species.
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Lemma 3.4.2 (Construction of a feasible flux (with respect to every persistent subset
of species) summing up to v̂). Given the solution c of an RDS with underlying reaction
network (S,R) and a vector v̂ ∈ Rm

+ constructed as in Lemma 3.4.1, then there is a feasible
flux v̂i with respect to each Si ∈ P(c), i = 1, . . . , k, such that

v̂ = lim
l→∞

1
tl+1 − tl

∫ tl+1

tl

∫
x∈Ω

v(c(x, t)) dt dx =
k∑

i=1

v̂i. (3.52)

Proof. Let r j ∈ R be an arbitrarily chosen reaction, and let n(r j) be the number of
persistent subsets S ∈ P(c) of species with support(r j) ⊆ S. We can distinguish the
following two alternative cases:

• n(r j) > 0, and

• n(r j) = 0.

We will prove that

n(r j) > 0⇔ v̂ j > 0 (3.53)

by proving the following two conclusions

1. n(r j) > 0⇒ v̂ j > 0, and

2. n(r j) = 0⇒ v̂ j = 0.

Then, for each persistent subset Si ∈ P(c), i = 1, . . . , k, of species we construct the
vector v̂i by defining

v̂i
j ≡

v̂ j/n(r j), if n(r j) > 0 and supp(r j) ⫅ Si

0, otherwise
(3.54)

for all reactions r j ∈ R. Then each vector v̂i
∈ Rm

≥0 is a feasible flux with respect to the
corresponding persistent subset Si ∈ P(c), i = 1, . . . , k, of species and v̂ =

∑k
i=1 v̂i as

desired.
Now it only remains to prove the following two conclusions mentioned above:

1. n(r j) > 0⇒ v̂ j > 0.

If for a reaction r j ∈ R it holds that n(r j) > 0, then there is a persistent subset
S̃ ∈ P(c) of species with support(r j) ⊆ S̃. Thus for all sufficiently small ε > 0 it
holds that F(S̃ε) > 0, and according to Remark 3.1.1 there is a lower boundary
L(ε) > 0 for v j such that

v̂ j
(3.51)
= lim

l→∞

1
tl+1 − tl

∫ tl+1

tl

∫
x∈Ω

v j(c(x, t)) dt dx

≥ lim
l→∞

1
tl+1 − tl

∫ tl+1

tl

∫
{x∈Ω: c(x,t)∈S̃ϵ}

v j(c(x, t)) dt dx

Remark 3.1.1
≥ lim

l→∞

1
tl+1 − tl

∫ tl+1

tl

∫
{x∈Ω: c(x,t)∈S̃ϵ}

L(ϵ) dt dx

Remark 3.1.1
≥ L(ϵ) · lim

l→∞

1
tl+1 − tl

∫ tl+1

tl

∫
{x∈Ω: c(x,t)∈S̃ϵ}

dt dx

= L(ϵ) · F(S̃ϵ)
> 0, (3.55)
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where (tl)
∞

l=1 is a sequence of points in time from Lemma 3.4.1.

2. n(r j) = 0⇒ v̂ j = 0.
We prove this by contradiction, that is, by showing that from v̂ j > 0 it follows
that n(r j) > 0. Thus we assume v̂ j > 0. For

K ≡ sup{v j(c(x, t)) : t ≥ 0, x ∈ Ω}, (3.56)

0 ≤ K < ∞holds. Let (tl)
∞

l=1 be the sequence of points in time from Lemma 3.4.1.
Then for all sufficiently small ε > 0, from Remark 3.1.1 it follows that there is
an upper boundary U(ε) > 0 such that for every δ > 0,

0 < v̂ j

(3.51)
= lim

l→∞

1
tl+1 − tl

∫ tl+1

tl

∫
x∈Ω

v j(c(x, t)) dx dt

= lim
l→∞

1
tl+1 − tl

∫ tl+1

tl

[∫
{x∈Ω: c(x,t)∈support(r j)ε}

v j(c(x, t)) dx

+

∫
{x∈Ω: c(x,t)<support(r j)ε}

v j(c(x, t)) dx
]

dt

(3.56),Remark 3.1.1
≤ lim

l→∞

1
tl+1 − tl

[∫ tl+1

tl

∫
{x∈Ω: c(x,t)∈support(r j)ε}

K dx dt

+

∫ tl+1

tl

∫
{x∈Ω: c(x,t)<support(r j)ε}

U(ε) dx dt
]

= K · lim
l→∞

1
tl+1 − tl

∫ tl+1

tl

∫
{x∈Ω: c(x,t)∈support(r j)ε}

dx dt

+U(ε) · lim
l→∞

1
tl+1 − tl

∫ tl+1

tl

∫
{x∈Ω: c(x,t)<support(r j)ε}

dx dt

Remark 3.1.2
= K lim

l→∞

1
tl+1 − tl

∫ tl+1

tl

∑
S⊇support(r j)

∫
{x∈Ω: c(x,t)∈Sε,δ}

dx dt

+U(ε) lim
l→∞

1
tl+1 − tl

∫ tl+1

tl

∫
{x∈Ω: c(x,t)<support(r j)ε}

dx dt

= K ·
∑

S⊇support(r j)

lim
l→∞

1
tl+1 − tl

∫ tl+1

tl

∫
{x∈Ω: c(x,t)∈Sε,δ}

dx dt

+U(ε) · lim
l→∞

1
tl+1 − tl

∫ tl+1

tl

∫
{x∈Ω: c(x,t)<support(r j)ϵ}

dx dt

= K ·
∑

S⊇support(r j)

F(Sε,δ)

+U(ε) · lim
l→∞

1
tl+1 − tl

∫ tl+1

tl

∫
{x∈Ω: c(x,t)<support(r j)ε}

dx dt.(3.57)
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By letting ε→ 0 we get

0 < lim
ε→0

[
K ·

∑
S⊇support(r j)

F(Sε,δ)

+U(ϵ) · lim
l→∞

1
tl+1 − tl

∫ tl+1

tl

∫
{x∈Ω: c(x,t)<support(r j)ε}

dx dt
]

Remark 3.1.1
= lim

ϵ→0

[
K ·

∑
S⊇support(r j)

F(Sε,δ)
]

= K ·
∑

S⊇support(r j)

lim
ϵ→0

F(Sε,δ) (3.58)

for every δ > 0. Thus from Definition 3.1.3 it follows that at least one subset S
of species with S ⊇ support(r j) is persistent with respect to c, that is, S ∈ P(c).
This means n(r j) ≥ 1 > 0 in contradiction to the assumption.

This completes the proof of Lemma 3.4.2. □

Note that in Equation 3.54 we did not construct the vectors v̂i such that they neces-
sarily represent the frequency of their appearance in the solution c of the RDS. Rather
we only considered whether or not their components are zero. Putting Lemma 3.3.4,
Lemma 3.4.1, and Lemma 3.4.2 together, we are able to state the second main result
of this paper.

Theorem 3.4.1 (The set of persistent species is a DO). Given the solution c of an RDS
with an underlying reaction network, the set Φ(c) of persistent species is a DO.

Remark 3.4.1 (Unbounded solutions). Note that this work does not examine unbounded
solutions c to RDSs. A simple example might shed some light onto the consequences of this.
Let (S,R) ≡ ({s1}, {r1 : ∅ → s1}) be a reaction network. It exhibits only one DO, that is, the
organization O ≡ {s1}. For every solution c 0f any RDS with the same underlying reaction
network (S,R) it holds that limt→∞ c1(x, t) = ∞ for all x ∈ Ω. Even though this long-term
behavior seems to be captured by the organization O, strictly speaking, the theory developed
in this work does not apply to this case, and even the usage of the term "persistence" as
defined here is not allowed in this case unless a thorough study for the case of unbounded
solutions is made.

The next corollary is some kind of counterpart to Theorem 3.4.1.

Corollary 3.4.1 (Equivalence of organizations and persistent subsets). Given a reaction
network (S,R) and a subset S ⊆ S of species, then the following two statements are
equivalent:

1. There is an RDS with an underlying reaction network (S,R) with a constant solution
c(x, t) = c ∈ Rn

+ for all x ∈ Ω, t ≥ 0, and P(c) = {S}.

2. S is an organization and there is a feasible flux v̂ with respect to S such that Nv̂ = 0.

Proof. We prove the two directions of the equivalence separately.

• 1.⇒ 2.
From statement 1 it follows that by Theorem 3.4.1 that S is a DO. Since S is
distributed to only one subset of species, that is, to S itself, from the second
part of Lemma 3.2.1 it follows that S is an organization. Since statement 1
provides a fixed-point solution, for every sequence of points in time the total
flux v̂ constructed as in Equation 3.51 fulfills Nv̂ = 0.
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• 2.⇒ 1.
Let S be an organization with v̂ ∈ Rm

+ a feasible flux with respect to S fulfilling
N · v̂ = 0. We construct an RDS with the underlying reaction network (S,R)
such that for its solution c it holds that P(c) = {S}, that is, S is the only persistent
subset with respect to c. We set the diffusion rates of all species to zero and
choose the domain Ω = [0, 1] ⊆ R. We set the initial conditions

c0
i (x) =

1, iff si ∈ S,
0, otherwise.

(3.59)

for all species si ∈ S, i = 1, . . . , n, and all x ∈ Ω. For the flux vector function v()
we choose mass-action kinetics. For all reactions r j ∈ R, j = 1, . . . , m, we set
the reaction constants

k j ≡ v̂ j. (3.60)

Then for all times t ≥ 0 and all x ∈ Ω,

v(c(x, t)) = v̂ (3.61)

holds, and thus

ċ(x, t) = Nv̂ = 0. (3.62)

□

It might be possible (but it is more difficult) to prove that Corollary 3.4.1 holds
also for DOs and not just for organizations. There are dynamical systems with a
spatial domain for which the proof of Corollary 3.4.1 for DOs should be easier, for
example, the patch models defined in [1], which are systems of ODEs with a discrete
spatial domain. Given a DO distributed to subsets Si, i = 1, . . . , k, of species, such a
system could be designed containing k patches such that in each patch exactly one
of the Si, i = 1, . . . , k, is present as a fixed point, and the exchange of species between
different patches is adjusted properly.

As a special case, Theorem 3.4.1 is applicable to ODE systems which do not have
any space dimension and thus no diffusion.

Remark 3.4.2 (ODE systems as a special case). Given an initial value problem

ċ(t) = N · v(c(t)), c(0) = c0 (3.63)

with an underlying reaction network as outlined in the introduction, one can transfer the
whole of this work to that problem by neglecting all aspects concerning the space variable x,
for example, integration with respect to x.

3.5 Analysis of a DO lattices

In this subsection we bring together the two main results of this work, Theorem 3.2.1
(the set of DOs of a given reaction network forms a lattice) and Theorem 3.4.1 (the
set of persistent species with respect to every bounded solution being a DO). That is,
we show how to interpret a single DO lattice with regard to persistence. As for the
Hasse diagram of organizations, analyzing a single lattice of DOs of a given reaction
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network can reveal much information about the behavior of the solutions of RDSs
with that underlying reaction network.

For example, the smallest DO of a lattice, which following Lemma 3.2.2 is a
unique organization, tells us which species persist in every solution. Furthermore,
if a subset of species does not appear in the lattice of DOs, following Theorem 3.4.1
it cannot appear as a set of persistent species with respect to any solution, since if it
could, it would be a DO. So it is easy to check from the lattice of DOs whether, for
example, the whole set of species S can persist in any solution, because if so, then it
appears as a DO at the top of the lattice.

Given two DOs D1 and D2, it is interesting, for example for interpretation of
ecological systems, to study the DOs that contain both these DOs. Doing so reveals,
under which circumstances both DOs can coexist. The question of whether or not
D1∪D2 is an organization tells us something about the possible modes of coexistence
of D1 and D2. If D1 ∪ D2 is an organization, all species can persist when mixed
together. If not, they can only coexist when separated properly. Also it is interesting
to analyze those DOs that contain more species than D1 ∪D2, because these species
allow for the coexistence of D1 and D2 distributed either to different subsets of species
or to the same.

Now, instead of subsets of species, let us consider a single species. If a species
does not appear in any of the DOs of a lattice, it will not persist with respect to any
solution of any RDS with the underlying reaction network, which the lattice of DOs
was derived from. On the other hand, if a species appears in all DOs of a lattice,
then it will persist with respect to every solution of every RDS with the respective
reaction network.

Using the lattice of DOs one can distinguish different degrees of persistence of
a subset or a single species with regard to the reaction network (not with respect to
a single solution of an RDS). In this sense, for example, a species is more persistent
the further down it appears in the lattice and thus is an element of more DOs. Of
all DOs that contain a given species, the one occupying the lowest position in the
lattice determines which of the considered species definitely needs to persist. By
discussing our third example model in Section 3.6.3 below we will learn more about
such dependencies of species with regard to their persistence.

Contrary to dependency, if two species are elements of two different DOs that
are not linked by a vertical chain of interlaced DOs in the lattice, then these species
exhibit some sort of independence with regard to their persistence. Generally, the
more vertical levels a lattice pertains to between its lowest and its highest DO, the
more complex it is with regard to persistence.

For a solution c of an RDS, the dynamical changes of the set of species existent at
any time t can be visualized within the lattice by arrows between different subsets
of species indicating, which species are newly created (according to Lemma 3.3.3) or
which go extinct due to missing self-maintenance. In Figure 3.6 we have exemplified
this. Note that, as in Figure 3.6, it might be advantageous to augment the lattice of
DOs by further sets of relevance, for example, important transient sets of species,
which following Lemma 3.3.3 are initial sets of species and their closures. In Section ??
we provide an example simulation for an Influenza A virus infection dynamics model
from [17] where we juxtaposed the diagram with the courses of the concentrations
of the species from an ODE simulation (Figure ??) and the respective movement in
the Hasse diagram of organizations of the underlying reaction network (Figure ??).
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r1 : s1 → s2

r2 : s1 + s2 → 2s1

r3 : s2 + s3 → s2 + 2s3

r4 : s3 → ∅

(a) Reactions

s1s2|s2s3
s1s2s3

s2s3{s1s3}s1s2

s2{s1} {s3}

∅

(b) Distributed organizations

Figure 3.6: [46] An example reaction network (left) with the lattice
of all subsets of species (right). Those subsets in the boxes are DOs.
From each subset that is not a DO, a solid arrow points towards the
DO that will be approached initially by any solution starting with
that subset of species. More precisely, {s3} goes extinct since it is not
self-maintaining, and both {s1} and {s1, s3} will produce their closures
{s1, s2} (resp., {s1, s2, s2}). Further possible movements from the DOs
downward leading to one of their subsets are depicted by dotted

arrows.

3.6 Comparisons and hierarchies of several models using
their signature

Above we have shown that computing the lattice of DOs allows for some sort of
overall steady-state analysis of the whole set of possible solutions on the level of
species. In [45] we used the lattices of organizations of different in-host Influenza A
virus infection dynamics models based on ODEs to compare these models and to put
them into a hierarchy revealing different degrees of complexity and different types
of overall dynamic behavior.

In [43] we compute the lattices of DOs of different SARS-CoV-2 infection dynam-
ics models including not only in-host but also host-to-host models and one mixed
model. Furthermore we did not restrict that work to ODE models but included PDE
models as well proving the universality of our approach that is due to the fact that
it relies solely on the underlying reaction network of the models. We found DOs
that were not organizations proving the purpose of this work from another perspec-
tive. Besides some similarities, the DO lattices showed significant differences which
resulted in contradictory conclusions about their long-term behavior. Even though
those models are mostly intended to capture only the quantitative aspect of a special
subset of solutions, such conflicts regarding their overall qualitative dynamics can
be interpreted as showing a weak point in such modeling. Finally, in [43], by using
the lattice of DOs we also put the Influenza A and SARS-CoV-2 infection dynamics
models into one common hierarchy, revealing not only some of their similarities but
also their differences, for example, the lower complexity of the SARS-CoV-2 infection
dynamics models.

3.6.1 Example I

Figure 3.7a exhibits the PDEs of an RDS that pertains to a solution for which a
simulation result is shown in Figure 3.8. In Figure 3.7b the reactions of the underlying
reaction network are shown. Note that these reactions can be derived easily from the
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PDEs by writing the part related to the reactions in the form N · v(c) and obeying the
fact that v is a flux vector function. In section 2 in [43] an example of this procedure
is described. Figure 3.7c shows the lattice of DOs of the reaction network of Example
I. Now, we want to retrace the simulation results illustrated in Figure 3.8. Since the

∂c1

∂t
= c1c2 − c2

1c3 + d1
∂2c1

∂x2

∂c2

∂t
= −c2c3

∂c3

∂t
= −c2c3

(a) PDEs

r1 : s1 + s2 → 2s1 + s2

r2 : 2s1 + s3 → s3

r3 : s2 + s3 → ∅

(b) Reactions

s1s2|s1|s1s3

s1s2|s1s3

s2|s3s1s2

s3s2s1

∅

s1|s3

s1

(c) Distributed organizations

Figure 3.7: [46] PDEs, reactions and lattice of DOs of Example I. Un-
shaded boxes indicate organizations. Shaded boxes indicate DOs that
are not organizations. Note that the Hasse diagram of organizations
in this case is not a lattice. From Corollary 3.2.3 we know that there
must be at least one DO (which is not an organization) containing the
union of {s1, s2}, {s2} and {s3}. For this example we have three DOs that
are not organizations, one of which contains all species. For that DO
we depicted two different distributions one upon the other. The lower
one represents to the two subsets {s1, s2} and {s1, s3} which appear as
persistent subsets of species in the simulation shown in Figure 3.8.
There are feasible fluxes v̂1 = (2, 0, 0)T for {s1, s2} and v̂2 = (0, 1, 0)T

for {s1, s3} for example proving the self-maintenance for the DOS. It is
also possible to calculate a total flux from the simulation numerically.
The horizontal arrow symbolizes the necessary flow of the species s1
from the subset {s1, s2}, where it is overproduced, to the subset {s1, s3},
where it is reduced. That flow is enabled by diffusion which does not

have any preferred direction.

species s2 and s3 do not diffuse we can take a fixed location x ∈ Ω and analyze for it
the ODE system

∂c2(t)
∂t

= −c2(t)c3(t) (3.64)

∂c3(t)
∂t

= −c2(t)c3(t) (3.65)

governing the concentrations c2(t) = c2(x, t) (resp., c3(t) = c3(x, t)) of s2 and s3 at
this location x. Then one of the following three cases occurs.

1. Case I: If c2(0) < c3(0), then c2 will tend towards zero and c3(t) towards the
strictly positive value c3(0) − c2(0) in the long-run, with both converging from
above.

2. Case II: If, conversely, c2(0) > c3(0), then c3(t) tends towards zero and c2(t)
towards the strictly positive value c2(0) − c3(0).

3. Case III: If c0
2 = c0

3, then c2 and c3 equally tend towards zero in the long-run.
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The previously analyzed dynamics of the concentrations of s2 and s3 is independent
of that of the concentration of c1. With the initial conditions used in this example (see
the caption of Figure 3.8) the system finally reaches a steady state with

• species s2 only existing in the interval [−2; 0) ⊆ Ω,

• species s3 only existing in the interval (0; 2] ⊆ Ω, and

• species s1 existing in the whole domain, keeping the balance between its over-
production catalyzed by s2 and its consumption catalyzed by s3.

Thus the observed coexistence of all three species, which is impossible at any single
location, is reached by the spatial separation of the two persistent subsets {s1, s2} and
{s1, s3}, which keep the overall concentration of s1 in balance by their complementary
action on it. Note that even though the subset {s1} exists in the long-run at the singular
location x = 0, it is not persistent with regard to Definition 3.1.3 since the frequency
of occurrence of its respective (ε, δ)-neighborhoods tends towards zero as δ → 0.
In the next subsection we present a simulation where the persistent subsets are not
separated spatially but with respect to time, that is, they disappear and reappear
forever.

3.6.2 Example II

Our second example is adapted from an initial value problem based on a ODE system
from Neumann and Schuster [41] which we extended towards an RDS by adding a
spatial dimension x and using constant concentration values with regard to x for each
species. It resembles many situations from game theory (for example, the rock-paper-
scissors game or the prisoner’s dilemma with three participants) and biology (for
example, the coexistence of different strains of bacteria, such as E. coli, competing
for nutrition, intoxicating, invading, and resisting one another). The underlying
reaction network of Example II has three species s1, s2, and s3 and 12 reactions:

r1 : s1 → 2s1, r5 : s2 → 2s2, r9 : s3 → 2s3,
r2 : 2s1 → s1, r6 : 2s2 → s2, r10 : 2s3 → s3,
r3 : s1 + s2 → s2, r7 : s2 + s1 → s1, r11 : s3 + s1 → s1,
r4 : s1 + s3 → s3, r8 : s2 + s3 → s3, r12 : s3 + s2 → s2. (3.66)

Each species self-replicates (r1, r5, r9). So every subset of species is an organization.
Every species decays spontaneously (r2, r6, r10). Furthermore each species can reduce
any other (r3, r4, r7, r8, r11, r12). The dynamics of the species’ concentration values in
the domain Ω = [0; 2] is described by the PDEs

ċ1 = αc1 − κ1c2
1 − µc1c2 − µc1c3 + d1

∂2c1

∂x2 ,

ċ2 = βc2 − κ2c2
2 − (µ+ γ)c2c1 − µc2c3 + d2

∂2c2

∂x2 ,

ċ3 = εc3 − κ3c2
3 − µc3c1 − µc3c2 + d3

∂2c3

∂x2 . (3.67)

Figure 3.9 shows the results of a simulation for the reaction constantsα = 1.156, β = 2,
ϵ = 1, κ1 = 2, κ2 = 1.75, κ3 = 0.844, and µ = 1, γ = 4.6, with the diffusion rates
d1 = d3 = 0.1 and d2 = 0.2 and the initial conditions c1(0, x) = 0.1, c2(0, x) = 0.64,
c3(0, x) = 0.31, x ∈ Ω. Figure 3.10 shows the lattice of all subsets of species of
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the reaction network. All of them are organizations. From [41] we know that the
instances of the subsets of species with exactly one species are fixed points and thus
their retention time gets longer and longer towards infinity with every passage of
the trajectory. Thus they are persistent of course. The retention times of the subsets
of species containing exactly two species converge towards strictly positive but finite
values and so are persistent too. Nevertheless, the set S containing all species is not
persistent. Thus for this example all species are persistent and the limit superior of
them is strictly positive, but the limit inferior equals zero. This is consistent with
lemma 5.0.2 in the supplementary material, which states that a strictly positive limit
inferior of the concentration values of a species is sufficient for its persistence and
this, in turn, is sufficient for a strictly positive limit superior of the concentration
values.

3.6.3 Example III

Here we augment Example II by adding three further species s4, s5 and s6. Each of
these species is involved in two reactions, an outflow reaction reducing the species
and a reaction producing the species out of a subset of the set {s1, s2, s3},

r13 : s4
k13
−−→ ∅,

r14 : s1
k14
−−→ s1 + s4

r15 : s5
k15
−−→ ∅,

r16 : s1 + s2
k16
−−→ s1 + s2 + s5,

r17 : s6
k17
−−→ ∅,

r18 : s1 + s2 + s3
k18
−−→ s1 + s2 + s3 + s6.

None of these reactions affects the concentrations of any of the species s1, s2, and
s3. Also there is no mutual influence among s4, s5 and s6. Contrary to Example II,
the lattice of DOs does not contain all subsets of species since some of them are not
closed, for example, the subset {s1}. Other subsets are no longer organizations but
are still DOs, for example, {s1, s2}.

The dynamics of the concentration values of s4 to s6 is determined by the PDEs

ċ4 = k14c1 − k13c4 + d4
∂2c4

∂x2 ,

ċ5 = k16c1c2 − k15c5 + d5
∂2c5

∂x2 .

ċ6 = k18c1c2c3 − k17c6 + d5
∂2c6

∂x2 . (3.68)

In this example we choose for s1 to s3 the same PDEs, reaction constants and initial
conditions as in Example II. So we get the same simulation results (see Figure 3.9),
that is, a periodic alternate appearing, disappearing, and reappearing of the species
s1 – s3, where each is persistent even though together they do not form a persistent
subset.

With the reaction constants k13 = . . . = k18 = 0.05, the homogeneous initial
conditions c4(x, 0) = c5(x, 0) = c6(x, 0) = 0.1, x ∈ Ω, and some arbitrary diffusion
constant,s we arrive at the simulation result for c4 – c6 shown in Figure 3.11. The
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courses of the concentrations c1 – c3 are the same as in Example II. All species s4
– s6 are reduced by outflow reactions (r13, r15, r17). For s4 and s5 this reduction is
compensated by the reactions r14 (resp., r16) in the sense that s4 and s5 are persistent.
For s6 the reduction by its outflow reaction r17 cannot be compensated by reaction
r18, that is, s6 is not persistent but goes extinct in the long-run. The reason for this
is that, contrary to r14 and r16, the support of r18 is not a subset of any persistent
subset of species. Figure 3.12 shows for Example II and Example III the sequences of
persistent subsets of species traversed repeatedly in the long-run.
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Figure 3.8: [46] Simulation result of Example I (see PDEs in Fig-
ure 3.7a) performed with MATLAB R2019a function pdepe. Note that
we applied a logarithmic scale for the diagrams the upper left and
in the lower right. The initial conditions are as follows: c0

1(x) = 1
for x ∈ Ω; c0

2(x) = 0.3x4 for x < 0 and c0
2(x) = 0 for x ≥ 0; and

c0
3(x) = 0.3x4 for x ≥ 0 and c0

3(x) = 0 for x < 0. The diffusion rates
are d1 = 5, d2 = d3 = 0, that is, only species s1 diffuses. By the
initial conditions, the domain Ω = [−2; 2] is divided into left and
right regions which initially overlap, but the overlap is deleted by the
reaction between the two competing species s2 and s3 in distinct parts
of the domain. Thus, as time approaches infinity, only the species s1
mediates between the left and right parts of the domain, where each
of the two persistent subsets of species persists. In the left part [−2; 0)
the species s1 is overproduced whereas in the right part (0; 2] it is con-
sumed. Altogether diffusion is responsible for the shift of s1 from the
left to the right part of the domain thus maintains the balance of the
total concentration of s1. Only species s1 as an intermediary exists in
both parts of the domain. The simulation of the solution c of this RDS
shows that all three species are persistent and there are two persistent
subsets {s1, s2} and {s1, s3}. From the results of this paper it follows
that the set Φ(c) = {s1, s2, s3} of persistent species is a DO an,d we find
from the simulation that it is distributed spatially to the two subsets

{s1, s2} and {s1, s3}.
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Figure 3.9: [46] Simulation result of Example II (see PDEs (3.67))
performed with MATLAB R2019a function pdepe. The periodicity
(with increasing period) of the dynamic behavior is visible. From
the lower right diagram it can be seen how the concentration values
periodically approach different subsets of species depicted at the top.
Those are the persistent subsets of species, that is, {s1}, {s1, s3}, {s3},
{s3, s2}, {s2}, and {s2, s1}. The periodic behavior continues infinitely

beyond the time span captured in the diagrams.

s1s2s3

s3s2s2s1s1s3

s2s3s1

∅

Figure 3.10: [46] All subsets of species of the reaction network of
Example II are organizations. The arrows indicate the movement that

is approached by the trajectory in the long-run.
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Figure 3.11: [46] Simulation result for species s4, s5, and s6 of Example
III (see PDEs (3.68)) performed with MATLAB R2019a function pdepe.
s4 and s5 are persistent, whereas s6 does not persist. The reaction
constant values are k13 = . . . = k18 = 0.05, and the homogeneous

initial conditions are c4(x, 0) = c5(x, 0) = c6(x, 0) = 0.1, x ∈ Ω.

Example II

(s1s2s3) s1 s1s3 s3 s3s2 s2 s2s1

Example III

(s1s2s3s4s5s6) s1s4s5 s1 s1s3s4 s3s4 s3 s3s2 s2 s2s1s4s5

Figure 3.12: [46] The sequences of persistent subsets of species in
the order they are periodically approached in the long-run. Shown
in brackets are subsets of species referring to the initial conditions.
Printed in bold are subsets of species with retention times approaching
infinity as t → ∞. The retention times of the other subsets converge
towards finite values. Dotted lines indicate how the infinitely growing
time periods of Example II each split into two time periods in Example
III. Note that for Example III the transition from {s1, s4, s5} to {s1}might
pass either the subset {s1, s4} or {s1, s5} depending on which of the
species s4 and s5 vanishes more rapidly. Note that, consistent with the
results of this paper, for both examples either of the persistent subsets
of species of the illustrated sequences is closed and, together as DOs,

they are self-maintaining.
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Chapter 4

Conclusions

In this work we analyzed and discussed the persistence of species in dynamical
systems relying on chemical reaction networks. In particular, we characterized the
set of persistent species of bounded solutions of reaction-diffusion systems. We
revealed the important fact that this set can consist of different closed subsets which
are separated from each other temporally or spatially and nonetheless complement
one another to achieve self-maintenance as a whole. We named sets of species with
the properties mentioned above distributed organizations (DOs), noting that a DO
can be identified solely from the reaction network, without requiring details about
the kinetics.

By proving that the set of DOs of a reaction network forms a lattice we revealed a
hierarchy relating all the potentially persistent sets of species of a dynamical system to
one another. Finally, we exemplified how such information can be used to understand
the behavior of complex dynamical systems with regard to appearance, extinction
and persistence of their species. Taken together, the novel approach presented here
will contribute to understanding and coping with complex systems particularly
where spatial properties play an important role and different subsystems, though
separated, cooperate to ensure their survival as a whole. Examples can be found in
biology, like cell differentiation, ecology, like cooperative behavior, and chemistry,
like combustion.

This study opens up several problems for future work: If nonnegativity of the
solutions of the RDS (see lemma 3.3.1) can be proven for non-diagonal Fickian dif-
fusivity matrices D, then our results hold true also in the case of cross-diffusion as
described by [55]. Other types of dynamical systems derived from reaction networks
can be considered, like the patch systems [1], which are connected ODE systems ex-
isting on a discrete domain, or stochastic reaction systems [39, 18]. Our approach
can also be extended to RDS with other boundary conditions than the homogeneous
Neumann BCs considered here, for example, by modifying the reaction network [44].
Furthermore, this work did not consider unbounded solutions. The problem with
unbounded solutions is that the concept of feasibility of flux vectors breaks down
since, for example, a reaction can be active even though one of its reactants has a
concentration value approaching zero. An algorithm to compute all DOs of a given
reaction network and an implementation as an online tool is in preparation.
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Chapter 5

Comparison of different concepts
of persistence

Here we present two lemmas mentioned in Section 2.0.2. Lemma 5.0.2, already
sketched in Equation 3.16, provides a comparison of our concept of persistence to a
stronger and a weaker one. Lemma 5.0.1 is used to prove Lemma 5.0.2.

Lemma 5.0.1 (Equivalence criterion for the persistence of a species). Given a solution
c of a RDS with an underlying reaction network (S,R). A species si ∈ S with respect to c is
persistent if and only if for all sequences (t j)

∞

j=1 of points in time

lim sup
j→∞

1
t j+1 − t j

∫ t j+1

t j

∫
x∈Ω

ci(x, t) dx dt > 0. (5.1)

Proof. 1. First we assume that si is persistent with respect to c. From Lemma 3.1.1
follows that there is an ε > 0 such that F({si}

ε) > 0 with respect to c and to all
sequences (t j)

∞

j=1 of points in time. Thus,

lim sup
j→∞

1
t j+1 − t j

∫ t j+1

t j

∫
x∈Ω

ci(x, t) dx dt

≥ lim sup
j→∞

1
t j+1 − t j

∫ t j+1

t j

∫
x∈Ω: ci(x,t)>ε

ε dx dt

= ε · F({si}
ε)

> 0.

2. Now we prove the other direction by contradiction. We assume, that Equa-
tion 5.1 holds true for all sequences (t j)

∞

j=1 of points in time and that si is not
persistent with respect to c, that is (following Lema 3.1.1), F({si}

ε) = 0 for all
sufficiently small ε > 0 and all sequences (t j)

∞

j=1 of points in time. Thus, for all
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sufficiently small ε > 0 holds

0 < lim sup
j→∞

1
t j+1 − t j

∫ t j+1

t j

∫
x∈Ω

ci(x, t) dx dt

= lim sup
j→∞

1
t j+1 − t j

∫ t j+1

t j

[∫
x∈Ω: ci(x,t)≤ε

ci(x, t) dx

+

∫
x∈Ω: ci(x,t)>ε

ci(x, t) dx
]

dt

≤ lim sup
j→∞

1
t j+1 − t j

∫ t j+1

t j

[
ε · |Ω|+ K

∫
x∈Ω: ci(x,t)>ε

dx
]

dt

= ε · |Ω|+ K · F({si}
ε)

= ε · |Ω|
ε→0
−−−→ 0,

where K ∈ R+ is an upper boundary for ci(x, t), x ∈ Ω, t ≥ 0. This is a contra-
diction and thus the proof is completed.

□

Next we state the promised lemma ranking different grades of persistence of a
species including the definition used in this work (see Definition 3.1.3).

Lemma 5.0.2 (Comparison of different grades of persistence). Given a solution c of a
RDS with an underlying reaction network (S,R) and an arbitrary species si ∈ S. Then the
following two conclusions hold true:

1. lim inft→∞
∫

x∈Ω ci(x, t) dx > 0 ⇒ si is persistent with respect to c.

2. si is persistent with respect to c, ⇒ lim supt→∞

∫
x∈Ω ci(x, t) dx > 0.

Proof. 1. We assume

lim inf
t→∞

∫
x∈Ω

ci(x, t) dx > 0. (5.2)

So there is a time T > 0 such that∫
x∈Ω

ci(x, t) dx > ε. (5.3)

for all t > T and all sufficiently small ε > 0. Thus, for every sequence (t j)
∞

j=1
of points in time there is a natural number j0 such that for all j > j0 and all
sufficiently small ε > 0

1
t j+1 − t j

∫ t j+1

t j

∫
x∈Ω

ci(x, t) dx dt >
t j+1 − t j

t j+1 − t j
ε = ε > 0. (5.4)

With Lemma 3.1.1 we deduce that si is persistent.

2. We prove the equivalent statement that from

lim sup
t→∞

∫
x∈Ω

ci(x, t) dx = 0. (5.5)
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follows that si is not persistent. Thus we assume that Equation 5.5 holds true.
Then for all δ1 > 0 there is a T(δ1) > 0 such that∫

x∈Ω
cs(x, t) dx < δ1 (5.6)

for all t > T(δ1). Then for all ε > 0∫
{x∈Ω: ci(x,t)>ε}

dx t→∞
→ 0. (5.7)

We deduce that for all δ2, ε > 0 there is a T(δ2, ε) > 0 such that∫
{x∈Ω: ci(x,t)>ε}

dx < δ2 (5.8)

for all t > T(δ2, ε). Thus for all sequences (t j)
∞

j=1 of points in time and all
δ2, ε > 0 there is a natural number j(δ2, ε) such that∫ t j+1

t j

∫
{x∈Ω: ci(x,t)>ε}

dx dt < (t j+1 − t j)δ2 (5.9)

for all j > j(δ2, ε). Thus for all sequences (t j)
∞

j=1 of points in time

lim sup
j→∞

1
t j+1 − t j

∫ t j+1

t j

∫
{x∈Ω: ci(x,t)>ε}

dx dt <
t j+1 − t j

t j+1 − t j
δ2 (5.10)

for all δ2, ε > 0. By letting δ2 → 0 we conclude

F({si}
ε) = 0 (5.11)

for all ε > 0, that is, si is not persistent.
□
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