PL360O REFERENCE MANUAL

Stanford University

fetched fromftp://1indy.stanford. edu/ pub/pl 360.tar. gz
and slightliy reformatted from ANSI carriage |ineprinter
control to ASCII characters and using formfeed characters.

This manual was witten and formatted for a lineprinter
with a wide carriage. Exanples in appendix A are likely
to get truncated in printing.

If you are reading this text as a pdf file, you wll
see appendi x a in | andscape node without truncation.

SECTI ON 1.

SECTI ON 2.

SECTI ON 3.

SECTI ON 4.

SECTI ON 5.

SECTI ON 6.

SECTI ON 7.

SECTI ON 8.

SECTI ON 9.

CONTENTS

I NTRODUCTI ON

DEFI NI TI ON OF THE PL360 ENVI RONMENT

2.1

Termi nol ogy, Notation, and Basic Definitions .

2.1.1 The Processor

2.1.2 Relationships .

2.1.3 The Program.

1.4 Syntax . .

dentifiers and BaS| c Syrr‘ool s

.2.1 ldentifiers . . .o
2.2 Basic Synbols . .
2.3 Standard Identlflers

S

Hexadeci nal Val ues .
Deci mal Val ues .
Nureri c Val ues .
String Val ues

Bl ock Structure .
Program Segnent ati on .
Dat a Segnentati on

Mai n Program .

DECLARATI ONS

aoaooaa
oUhwWN R

T

PO 0N
CRNDURWNED

NN

1
2

Regi ster Synonym Decl arati ons
Segnment Base Decl arati ons

Cel | Decl arations

Cel |l Designators . .

Cel | Synonym Decl ar ati ons
EQUATE Decl arati ons

TEMENTS

Regi ster Assignnents .

Regi st er Assi gnnent ExpreSS| ons
Cel | Assignnents . . .
GOTO Statenents and Labels .

Condi ti ons and Corrpound Condi t [bns

IF Statenents . .
VWHI LE Statenents .
FOR St atenents .
CASE St atenents

UNCTI ONS

Functi on Decl arati ons
Function Statenents

PROCEDURES

8.1
8.2

THE

Procedure Decl arati ons
Procedure Statenents

RUN- TI ME LI BRARY

9.1 Standard Procedures .

9.2
9.3

Nunber Conversion Procedures
Dat a Mani pul ati on Procedures

-
=

I\JI\JI\JI\JI}JI\JI\JI\JI\J
QR BRRWNNNREPEF

G eren
OGRrWNRERE

~N~ PO PDOOD
e N~NooMDWNE

OIOOO
N -

OQIDO
AN

SECTI ON 10. COWPI LER CONTROL FACI LI TI ES

10.1 Instructions to the Compiler 10-1
10.1.1 Listing Control 10-1
10.1.2 Listi ng Options 10-12
10.1.3 Operating System Control 10-2
10.1.4 ldentification e e 10-2
10.1.5 Program Base Regi ster Cont rol 10-2
10.1.6 bject Deck Control 10-3
10.1.7 Copy Facility 10-3
10.1.8 Conditional Corrplle D|rect|ves 10-3

10. 2 Conpiler Listing Qutput . . . e 10-4

10.3 Error Messages of the Conpil er . .« .« 10-5

10. 4 Conpiler Object Program Qutput 10-6

SECTI ON 11. LI NKAGE CONVENTI ONS
11.1 Calling External Routines fromPL360 11-1
11. 2 Requestl ng Supervisor Services . . N I R

11.3 Calling PL360 Procedures from External Routines . 11-2

SECTI ON 12. PL360 AS AN ORVYL LANGUAGE PROCESSOR

12.1 Using the PL360 Conpiler with ORvwL 12-1
12. 2 I nput/ Qut put Subroutines for

Interactive PL360 Prograns 12-3

APPENDI X A. EXAMPLE PROGRANMS AND LI STI NGS
Sanpl e Program Denonstrating Extensions to PL360 . . . A1
Ri ght Triangle Problem. A6®6
d obal Procedure TRTEST A9
ORVYL Programto Set Options A1l
APPENDI X B. THE OBJECT CODE B1
APPENDI X C. COWPILER CONSTRUCTS C1
APPENDI X D. SYNTACTICINDEX D1
APPENDI X E. SYNTACTIC ENTITIES E1

TABLES

Table 6.1 Allowable Cell and Register Type Combi nations .. . 6-1
Table 6.2 Allowable Cell and Val ue Conmbi nations 6-3
Table 6.3 Condition Code States Ce e 6-5
Table 7.1 Instruction Format 12
Table B.1 bject Code Qperators B1
Table C.1 2-Byte Instructions C2
Table C.2 4-Byte Instructions C3

[1]

[2]

[3]

[4]

[5]

[6]
[7]
[8]
[9]
[10]
[11]
[12]

[13]

[14]

REFERENCES
N. Wrth: PL360. "A Programm ng Language for the 360 Conputers,"
JACM 15 (1968) 37.

SCl P/ Acadeni ¢ Conputing Services Program Libraries, Polya Hall
Stanford University.

J. Eve: "PL360 Language Extensions,” Internal Note, Conputing
Laboratory. University of Newcastle upon Tyne.

G M Amahl, G A Blaauw, F. P. Brooks, Jr.: "Architecture
of the IBM System 360," |BM Journal of Research and Devel opnent 8
(1964) 87.

G A Blaauw et al. "The structure of System 360," |IBM Systens
Journal 3 (1964) 119.

"I BM Systenf 360 Principles of Operation,” |BM A22-6821.

"I BM Systenf 360 OS Assenbl er Language, " |BM C28-6514.

MIS Vol . |, University of M chigan Conputation Center, Ann Arbor.
"I BM Syst em 360 Li nkage Editor and Loader" |BM C28-6538.

"PL360 Progranming Manual," University Conputi ng Laborat ory,
University of Newcastle upon Tyne, Carenpont Tower, Newcastle upon

Tyne, NE1 7RU, Engl and, 1970.

"I BM Systenf 360 DOS System Control and System Service Prograns,"
| BM C24- 5036

R Fajman and J. Borgelt, "ORVYL User's Cuide," St anf or d
Uni versity Conputation Center, 1971.

"I BM Systenf 360 Di sk Operating System Supervisor and | nput/Qutput
Macr os," | BM C24-5037.

N. Wrth: "Format of PL360 Prograns," ALGOL W - Project Meno,
Stanford University, Sept. 9, 1966.

FOREWORD

The intent of this manual is to provide a reference tool for progranmers
using PL360. Although it is not a textbook, it has been organized in
such a way that each section introduces new material dependent on
i nformati on covered in preceding sections. In that sense, it can serve
as a self-teaching aid.

Those readers not famliar with Bacus-Naur Form (BNF), may find the
syntactic rules used to describe the |anguage difficult to understand.
However, the textual descriptions and exanpl es associated with a set of
syntactic rules should serve to clarify those rules. Also, the sanple
prograns of Appendix A further clarify the |anguage structure.

Know edge of the 360 architecture [4, 5 or 6] is a prerequisite for
understanding the |anguage definition and sonme famliarity with the 360
Assenbly Language [7] and |linkage editor [8] 1is assuned in the
description of the object code produced by the conpiler.

In witing this manual, the authors have drawn heavily wupon the
(anonynous) PL360 Programmi ng Mnual published by the University of
Newcast| e upon Tyne, Conputing Laboratory [10].

SECTION 1. | NTRODUCTI ON

PL360 is a programm ng |anguage designed specifically for the |IBM
System 360 conputers. It provides the facilities for a synbolic nachine
| anguage but displays a structure simlar to that of ALGOL. A forma

description of an earlier version of the |anguage has been published by
Ni kKl aus Wrth [1] who directed the devel opnment of the PL360 | anguage and
its conpiler at the Conputer Science Departnent of Stanford University.

Al t hough PL360 was originally desi gned for writing | ogically
sel f-contai ned prograns, subsequent extensions pernit conmunication with
separately conpiled prograns.

An efficient one pass "in core" conpiler, witten by N klaus Wrth,
Joseph W Wells, Jr. and Edwin Satterthwaite, Jr., which incorporates
t hese extensions is available through the Stanford Program Library [2].
This conpiler translates PL360 source code into object nodules in the
format required by several 360 operating systens (OS and MS for
exanpl e) . The docunentation issued with the conpiler includes severa

anmendnents to the original |anguage definition. Further extensions were
carried out at the University of Newcastle by Janes Eve. These changes
[3,10] were ainmed primarily at relaxing the |linkage constraints on
separately conpiled prograns, enabling for exanple direct communication
with progranms using 0S/ 360 type |inkages. M chael Mal col m of the
Stanford Computer Science Departnment made several nodifications to the
version of the conpiler produced by Janes Eve. These extensions nmade it
possible to run the conpiler and conpiled prograns under DOS operating
systens. Assenbly |anguage subroutines were also witten for both OS
and DOS to facilitate input-output with sequential tape and disk files.
Dick Guertin of the Stanford Center for Infornmation Processing extended
the syntax of PL360, primarily to increase programm ng conveni ence. He
has also witten assenbly | anguage interfaces to allow interactive use
of both the PL360 conpiler and PL360 prograns under the ORVYL
ti me-sharing nmonitor at Stanford. Andrew Koeni ng of Colunbia University
al so contributed i nprovenents to the conpiler

The | anguage definition and conpiler description incorporating all
changes are given in this nmanual. For a full discussion of the
background underlying the devel opment of PL360 and a description of the
organi zati on and developnent of the conpiler together wth some
perceptive comments on the 360 architecture, reference nust still be
made to [1], where the ains of the | anguage are summari zed:

... it was decided to develop a tool which woul d:

1. allowfull use of the facilities provided by the 360
har dwar e,

2. provide convenience in witing and correcting progranms, and

3. encourage the user to wite in a clear and conprehensible
style.

As a consequence of 3, it was felt that progranms should not be
able to nodify thenselves. The | anguage should have the
facilities necessary to express conpiler and supervi sor
prograns, and the progranmer should be able to determni ne every
det ai | ed machi ne operation

SECTION 2. DEFI N TION OF THE PL360 ENVI RONMENT
2.1 Term nol ogy, Notation, and Basic Definitions

The | anguage is defined in terns of a computer which is conprised of a
nunber of processing units and a finite set of storage elenents. Each
of the storage elenments holds a content, also called value. At any
given time, certain significant relationships may exi st between storage
el enents and val ues. These rel ationships nay be recogni zed and al tered,
and new val ues may be created by the processing units. The actions
taken by the processors are determined by a program The set of
possi bl e prograns formthe | anguage. A programis conposed of, and can
therefore be deconposed into elenmentary constructions according to the
rules of a syntax, or gramar. To each elenmentary construction
corresponds an el enentary action specified as a semantic rule of the
| anguage. The action denoted by a programis defined as the sequence of
el enentary actions corresponding to the elenmentary constructions which
are obtai ned when the programis deconposed (parsed) by reading from
left to right.

2.1.1 The Processor

At any tine, the state of the processor is described by a sequence of
bits called the programstatus word (PSW. The status word contai ns,
among ot her information, a pointer to the next instruction to be
executed, and a quantity which is called the condition code.

Storage elenents are classified into registers and core nenory cells,
simply called cells. Registers are divided into three types according
to their size and the operations which can be perforned on their val ues.
The types of registers are:

a. integer or logical (a sequence of 32 bits)
b. real (a sequence of 32 bits)
c. long real (a sequence of 64 bits)

Cells are classified into five types according to their size and the
type of value which they my contain. A cell nay be structured or
sinple. The types of sinple values and sinple cells are:

a. byte or character (a sequence of 8 bits = 1 byte)
b. short integer (a sequence of 16 bits = 2 bytes, interpreted
as an integer in tw's conplenent binary notation)

c. integer or logical (a sequence of 32 bits = 4 bytes,
interpreted as an integer in tw's conplenment binary
not ati on)

d. real (a sequence of 32 bits = 4 bytes, interpreted as a
base- 16 fl oati ng-poi nt numnber)

e. long real (a sequence of 64 bits = 8 bytes, interpreted as

a base-16 fl oating-poi nt numnber)

The types integer and | ogical are treated as equivalent in the |anguage,
and consequently only one of them nanely integer, wll be nentioned
t hroughout this manual. Likew se, byte and character are equival ent and
only byte is nmentioned.

2.1.2 Rel ationships

The nost fundanmental relationship is that which exists between a cell
and its value. It is known as containnment; the cell is said to contain
t he val ue.

Anot her rel ationship exists between the cells which are the conponents
of a structured cell, called an array, and the structured cell itself.
It is known as subordination. Structured cells are regarded as
containing the ordered set of the values of the conmponent cells.

A set of relationships between values is defined by monadic and dyadic
functions or operations, which the processor is able to evaluate or
perform The relationships are defined by mappi ngs between values (or
pairs of values) known as the operands, and val ues known as the results
of the evaluation. These mappings are not precisely defined in this
manual ; instead, see [6].

2.1.3 The Program

A program contains decl arations and statenents. Declarations serve to
list the «cells, registers, procedures, and other quantities which are
involved in the algorithmdescribed by the program and to associate
nanes, called identifiers, with them Statenents specify the operations
to be performed on these quantities, to which they refer through the use
of identifiers.

A programis a sequence of tokens, which are basic synbols, strings or
comment s. Every token is itself a sequence of characters. The
foll owi ng conventions are used:

a. Basic synbols constitute the basic vocabulary of the
| anguage (cf. 2.2.2). They are either single characters,
or uppercase |letter sequences.

b. Strings are sequences of characters enclosed in quote marks
i.e. "string" (cf. 3.4).

c. Comments are sequences of characters (not <containing a
sem col on) preceded by the basic synbol COMMENT and
followed by a senmicolon (;). Coments nay also be witten
as a sequence of characters between vertical bars (!).
Thus, ! this is a comment ! It is understood that conments
have no effect on the execution of a program

In order that a sequence of tokens be an executable program it nust be
constructed according to the rules of the syntax.

2.1.4 Syntax

A sequence of tokens constitutes an instance of a syntactic entity (or
construct), if that wentity can be derived fromthe sequence by one or
nore applications of syntatic substitution rules. In each such
application, the sequence equal to the right side of the rule is
repl aced by the symbol which is its left side.

2-2

Syntactic entities (cf. Appendix D, E) are denoted by english words
enclosed in brackets < and > These words describe approximtely the
nature of the syntatic entity, and where these words are used el sewhere
in the text, they refer to that syntactic entity. For reasons of
not ati onal conveni ence and brevity, the uppercase letters A, K, and T
are also wused in the denotation of syntactic entities. They stand as
abbreviations for any of the follow ng words (or pairs):

A K T
| ong real | ong real long rea
real r eal real
i nt eger i nt eger i nt eger
short integer short integer
byt e
Syntactic rules are of the form<E> ::= & where <E> is a syntactic

entity (called the left side) and & is a finite sequence of tokens and
syntactic entities (called the right side of the rule). The notation

<E> = &1 &' ... ! &n
is used as an abbreviation for the n syntactic rules
<E> = &1, .= &2, ..., <BE> ::= &n
If in the denotations of constituents of the rule the uppercase letters
A, K or T occur nmore than once, they nust be replaced consistently, or
possi bly according to further rules given in the acconpanying text. As
an exanple, the syntactic rule

<K-register> ::= <K-register identifier>

is an abbreviation for the set of rules

<long real register> ::= <long real register identifier>
<integer register> ::= <integer register identifier>
<real register> ::= <real register identifier>

2.2 ldentifiers and Basic Synbol s

The inplenentation inposes the restriction that only the first 10
characters of identifiers are recogni zed as significant.

Throughout this section, user defined identifiers are shown in |owercase
letters to distinguish themfromstandard identifiers and basic synbol s.
In actual practice, all identifiers are constructed from uppercase
letters.

2-3

2.2.1 ldentifiers

<letter> ::= AABICDEFITGHI!JIKILLMNOPIQR SITTUVIWX! Y Z

<digit>::=01!1/ 21121314151 6! 71 819

<identifier> ::=<letter>! <identifier><letter>! <identifier><digit>

<K-register> ::= <identifier>

<T-cell identifier> ::= <identifier>

<procedure identifier> ::= <identifier>

<function identifier> ::= <identifier>

<integer value identifier> ::= <identifier>
An identifier is a K-register, T-cell, procedure, function, or integer
value identifier, if it has respectively been associated with a
K-register, T-cell, procedure, function, or integer value (called a

quantity) in one of the blocks surrounding its occurrence (cf. 4.1).
Thi s association is achieved by an appropriate declaration. The
identifier is said to designate the associated quantity. |If the sane
identifier is associated with nore than one quantity, then the
consi dered occurrence designates the quantity to which it was associ ated
in the innernost block enbracing the considered occurrence. In any one
bl ock, an identifier nust be associated with exactly one quantity. In
the parse of a program that association determ nes which of the rules
gi ven above appli es.

Any processing computer and operating system can be considered to
provide an environnent in which the programis enbedded, and in which
sonme identifiers are permanently declared. Some identifiers are assuned
to be known in every environnent; they are called standard identifiers,
and are listed in Section 2.2.3.

2.2.2 Basic Synbols
Basi ¢ synbol s which consist of uppercase letter sequences shown bel ow

are denoted by the sane letter sequences wi thout further distinction.
Such letter sequences are called reserved words and cannot be wused as

identifiers. Enbedded blanks are not allowed in reserved words,
identifiers, and nunbers. Adj acent reserved words, identifiers, and
nunbers nust be separated by at | east one bl ank or ot her
non- al phanuneri c. O herwi se, blanks my be used freely. The basic

synbol s are:
+- %/ () =<>n
N O
DO IF OF
ABS AND END FOR NEG SYN XOR
BASE BYTE CASE DATA ELSE GOTO LONG NULL
REAL SHLA SHLL SHRA SHRL STEP THEN
ARRAY BEG N CLOSE DUMMY SHORT UNTI L WHI LE
COVMON EQUATE GLOBAL
COWMENT | NTEGER LOG CAL SEGVENT
EXTERNAL FUNCTI ON REGQ STER
CHARACTER PROCEDURE

2-4

2.2.3 Standard Ildentifiers

The following identifiers are predeclared in the |[|anguage but may be
redeclared due to block structure. Their predefined nmeanings are
specified in Section 5, Section 7.1, or Section 9. 1.

VEM

Bl B2 B3 B4 B5 B6 B7 B8 B9 B10 Bll Bl12 B13 Bl14 B15
RORL RZ R3RAR5 R RV R8B RO RIO R11 R12 R13 R14 R15
FO F2 F4 F6

FO1 F23 F45 F67

BALR CLC CLI CvB CvD ED EDW EX I C

LA LH LM LTR MWC WI WN WZ NC NI OC O PACK

RESET SET SLDA SLDL SPM SRDA SRDL STC STH STM SVC
TEST TM TR TRT TS UNPK XC XI

CARRY FALSE M XED OFF ON OVERFLOW STRI NG TRUE

CANCEL GET KLOSE OPEN PAGE PRI NT PUNCH PUT READ WRI TE

2-5

SECTI ON 3.

3.1 Hexadeci nal Val ues

Val ues may be expressed in hexadeci ma

<hexadeci ma
<hexadeci ma

digit> ::=
val ue> :: =
]

A hexadeci mal

<digit>!

<hexadeci mal
<hexadeci ma

val ue denotes a sequence of bits.

VALUES

not ati on.
Al B! C!
digit>
val ue> <hexadeci na

D! E!' F
digit>

Each hexadecinmal digit

stands for a sequence of four bits defined as foll ows:
0 = 0000 4 = 0100 8 = 1000 C = 1100
1 = 0001 5 = 0101 9 = 1001 D = 1101
2 = 0010 6 = 0110 A = 1010 E = 1110
3 = 0011 7 = 0111 B = 1011 F=1111
Note: |If hexadeci mal values are used in conjunction with arithnmetic or
| ogi cal operators in a program they nmust be considered as a sequence of
bits which constitute the conputer's representation of the nunber on
which the operator is applied. Hexadeci mal values followed by the
letter R o L my be used to denote nunbers in wunnornalized
fl oating-point representation [4,5,6].
3.2 Decimal Values
<unsi gned i nteger nunber> ::= <digit>
I <unsigned integer nunber> <digit>
<unsi gned short integer number> ::= <unsigned integer number> S
<fractional nunber> ::= <unsigned integer nunber>

!
<scal e factor> ::=
<f | oati ng- poi nt
<unsi gned real

<unsi gned | ong real

<A- nunber> ::=

nunber > ::

<fractional
<i nt eger
nunber > ::

nunber > <digit>

number >

<fracti onal
<fracti onal
<unsi gned i nt eger
<fl oati ng- poi nt numnber >
<unsi gned i nt eger

!
number > :: = <f

I <u

<unsi gned A- nunber >

number >
nunber> ' <scal e factor>
number > '

nunber> R
number> L
number> L

| oati ng- poi nt
nsi gned i nt eger

I _ <unsigned A-nunber>

I nt eger, and
not ati on.
i ntegral power of 10.
the letter S followng
nunber, an unsi gned nunber
(Not e:

t he subtract operator "-

real, | ong

r eal

number s
The latter two can be followed by a scale factor denoting
Shor t

deci nal
an

are represented in

i ntegers are distinguished fromintegers by

t he

nunber.

is preceded by _
the underscore is used so as not to confuse negative values with
whi ch is never

nunber

Note: A-nunber is an abbreviation for
short integer nunber and integer
not ati onal conveni ence.

In
t he

order to denote a negative
underscore synmbol " _".

part of a nunber.)

long real nunber, real nunber
as defined in section 2.1.4 as a

<scal e factor>

3.3 Nuneric Val ues

<byte value> ::= <integer nunber> X
<short integer value> ::= <short integer nunber>
I <hexadeci mal val ue> S

<i nteger value> ::= <integer nunber>
I <hexadeci mal val ue>
I <integer value identifier>

<real value> ::= <real nunber>
I <hexadeci mal val ue> R
<long real value> ::= <long real nunber>

| <hexadeci mal val ue> L

Exanpl es:
byt e val ues: 2X _5X
short integer val ues: 10S #FFO0S
i nt eger val ues: 0 #106C 1 si ze
real val ues: 1.0 ~3.14 2.7'8 #46000001R
| ong real val ues: oL 3.14159265359L #4E00000000000001L

3.4 String Val ues

There are also string values, but these are not generally wused in
conjunction with arithnetic or |ogical operators.

<string> ::=" <character sequence> "
I <hexadeci nmal val ue> X
<character sequence> ::= <character>
I <character sequence> <character>

<character> ::= <any EBCDI C character except "> 1 ""
When a string is a character sequence enclosed in quote nmarks, the
string is limted to a total of 255 characters. |If a quote mark (") is
to be a character of the sequence, it is represented by a pair of

consecutive quote marks.

When a string is a hexadecimal value ending in X, up to 16 hexadecima
digits may be specified. Each pair of hexadecinmal digits represents one
character. If the nunber of hexadecimal digits specified is odd, a
hexadecimal O is prefixed to the specified value to nake the total even

Exanpl es: " ABC' denotes the sequence ABC
"A'tZ" denotes the sequence A'Z
#C1C2C3X denotes the sequence ABC

3-2

SECTION 4. PROGRAM FORNMAT

Compiler input records consist of 80 characters. The first 72
characters of each record are processed as part of a PL360 progranm
characters 73 through 80 are |listed but not otherwi se processed.

Character 72 of one record is considered to be imediately foll owed by
character 1 of the next record. Character position 1 may contain any
character except '$' or any other character (e.g., /) that would signal
a conpiler control statenment or job control statenent.

4.1

A bl

Bl ock Structure

<progranme ::= <block> . !

GLOBAL <sinple procedure headi ng>; <statenment> . !

GLOBAL <si npl e procedure headi ng> BASE <i nteger register>; <statenent>
<bl ock> ::= <bl ock body> END

<bl ock body> ::= <bl ock head> ! <bl ock body><stat enent>; !
<bl ock body><| abel definition>

<bl ock head> ::= BEGA N ! <bl ock head><decl| arati on>

<declaration> ::= <T-cell declaration>

<function declaration> ! <procedure declaration> !
<T-cell synonynk ! <K-register synonyne !

<i nteger val ue synonyns !

<segnent base declaration> ! <segnment close declaration>

<| abel definition> ::= <identifier> :

<statenment> ::= <sinple statenent> ! <IF statenent> !
<VWHI LE statenent> ! <FOR st at enent >

<sinple statenment> ::= <K-register assignment>

<T-cell assignnment> ! <function designator>
<procedure statenent> ! <CASE statenent> ! <@GOTO st atenent> !
<bl ock> ! NULL

ock has the form

BEGAND D ...; DS S ...: S END

where the D's stand for declarations and the S's for statenents

opti

onally preceded by |abel definitions. END nay be | abeled. The two

mai n purposes of a block are:

1. To enclose a sequence of statenments into a structural unit
which as a whole is classified as a sinple statenent. The
constituent statements are executed in sequence from left
to right.

2. To introduce new quantities and associate identifiers with
t hem These identifiers nay be wused to refer to these
guantities in any of the declarations and statements within
t he bl ock, but are not known outside the bl ock.

The synmbol NULL denotes a sinple statenment which inplies no action at

all .

Exanmpl e of a bl ock:

BEG N | NTEGER BUCKET;

| F FLAG THEN

BEG N BUCKET := RO; RO :
R2 : = BUCKET;

END ELSE

BEG N BUCKET := R2; R2 :
RO : = BUCKET;

END

RESET(FLAG) ;

B
R
8

[
R
3

END

The addressi ng mechani sm of the 360 conputers is such that instructions
can indicate addresses only relative to a base address contained in a
regi ster. The progranmer must insure that

1. every address in the programspecifies a "base" register

2. the specified register is loaded with the appropriate base
address whenever an instruction whose address refers to it
i's executed

3. the difference d between the desired absolute address and
t he avail abl e base address satisfies 0 <= d < 4096

This schene not only increases the anpbunt of ‘'clerical' work in
progranmi ng, but also constitutes a rich source of pitfalls. PL360 is
designed to ease the tedious task of base address assignment, and to
provi de checking facilities against errors.

The sol ution adopted here is that of program segnentation. The program
is subdivided into individual parts, called segnents. Every quantity
defined within the programis known by the nunber of the segment in
which it occurs and by its displacenment relative to the origin of that
segment. The problemthen consists of subdividing the program and
choosi ng base registers in such a way that

a. the conpiler knows which register is used as base for each
conpi | ed address

b. the conpiler can assure that each base register contains
t he desired base address during execution

c. the nunber of tinmes base addresses are reloaded into
registers is reasonably small

It was decided [1] that the progranmmer should express explicitly which
parts of the programare to constitute segnents. The program nmay then
be organized in a way that mninimzes the nunber of cross-references
bet ween segnents.

It should be noted that a progranmer's know edge about segnent sizes and
occurrences of cross-reference is quite different for prograns than for

dat a. In the latter case the programmer is aware of the precise anopunt
of storage needed for the declared quantities, and knows precisely where
in the programreferences to a specific data segment occur. In the

former case, know edge about the eventual size of a conpiled program
section is only vague, and the progranmer is sonetinmes unaware of the
occurrence of branch instructions inplicit in certain constructs of the
| anguage. It was therefore decided [1] to treat prograns and data
differently; this decision also conforned wth the desirability of
keepi ng program and data apart as separate entities.

4-2

4.2 Program Segnent ati on

A program segnent corresponds to a CSECT in assenbly |anguage. The
outernmost block of a programis always conpiled as a segnent. Since by
its very nature control lies in exactly one segnent at any instant, one

register is designated to hold the base address of the program segment
currently executing. Register RI5 is wusually used for this purpose
(however, cf. 8.1, 10.1.5). Branching to another segnment s
acconmplished with a procedure statenent which causes the program segment
base register of the destination segnent to be loaded wth its base
address before branching into that segment (cf. 8.2).

The natural unit for a program segnment is the procedure (cf. 8.1). The
normal way to enter a procedure is via a procedure statenent (cf. 8.2),
and the normal way to leave it is at its end, or by a call to another

procedure which does not return. An explicit GOTO statenment cannot be
used for branching fromone segment to another, but nay be used to
branch out of a local procedure within a segnent. The fact that no
implicitly generated instructions can ever lead control outside of a
segnment mm m zes the nunber of cross references in a natural way. Only
relatively large procedures should constitute program segnents, and a
facility is provided to designate such procedures explicitly. A
procedure to be conpiled as a program segnent nust contain the synbo
SEGVENT or GLOBAL in its heading.

4.3 Data Segnentation

For data, the programmer is aware of the precise amount of allocated
menory and of the instances where references are nmade to these
quantities. A base declaration was therefore introduced which inplies
that all quantities declared thereafter wthin the sanme block and
precedi ng another base declaration, refer to the specified register as
their base. These quantities forma data segnent. At the place of the
base declaration, an instruction is conpiled which |oads the register
with the appropriate segnent address (except for dumry base decl arations
and BASE RO); however, its previous contents are neither saved nor
restored upon exit fromthe bl ock.

Dat a segnents declared in parallel (i.e., not nested) blocks, can safely
refer to the sane base register. Data segnents declared within the sane
bl ock usually refer to different base registers. Data segnents decl ared
wi thin nested bl ocks should also refer to different base registers. | f
they do not, it is the programer's responsibility to ensure that the
register is appropriately |oaded when a segnent is addressed.

There is no limt to the size of data segnents. Al cell identifiers
must, however, refer to cells whose addresses differ fromthe segnment
base address by less than 4096. |If they do not, the <conpiler provides
an appropriate diagnostic.

4-3

4.4 Main Program

A PL360 program which is a block is considered to be enbedded in a
gl obal procedure such as the following: (cf. 8.1)

GLOBAL PROCEDURE SEGN0O1 (R14) BASE RI5;
BEG N STMRIL4, R12, B13(12)); Rl4 := RIL3;
BEG N GLOBAL DATA SEGNOOO BASE R13;

ARRAY 18 | NTEGER B13;
B13(4) := R14; B14(8) := RIL3;
B14(16) := B14(16) XOR B14(16);

BEG N COWMMENT Main program bl ock;
END;

R13 := B13(4); LMRL4, R12, B13(12));
END;
END.

The 18 integer area is reserved to conform to procedure calling
conventions (cf. 9.1). If the PL360 programis a gl obal procedure, there
is noinplicit base declaration for the data area (cf. 4.3).

When a programis defined as a bl ock, the conpiler supplies a transfer
address for the |linkage editor or |oader [9], and provides the necessary
entry and exit «code for linking with a standard operating system (cf.
10. 1. 3).

When a programis defined as a gl obal procedure, no transfer address is
supplied, and all |inkage code nust be witten by the progranmmer.

Both types of programare included in the sanple progranms of Appendix A

4-4

SECTI ON 5. DECLARATI ONS
5.1 Register Synonym Decl arations

The System 360 processor has 16 registers which contain integer nunbers
and are said to be of type integer (or logical). They are designated by
the standard register identifiers: RO through R15 (cf. 2.2.3).

The processor al so has four registers which contain real nunbers or |ong
real numbers. |If those registers are used in conjunction wth real
nunbers, they are said to be of type real, and are designated by the
standard register identifiers:

FO, F2, F4, F6

If they are used in conjunction with long real nunbers, they are said to
be of type long real, and are designated by the standard register
identifiers:

FO1, F23, F45, F67

The above register identifiers are assuned to be predeclared, and other
identifiers can be associated with these registers. Ref erence to
specific registers in the text apply to register synonyns al so.

<K-regi ster synonyne ::=
<sinmpl e K-type> REG STER <identifier> SYN <K-regi ster> !
<K-regi ster synonym> , <identifier> SYN <K-register>

5.2 Seqnent Base Decl arations

<segnment base declaration> ::=
<segnent base headi ng> BASE <i nteger register>

<segnment base headi ng> ::= SEGVENT ! GLOBAL DATA <identifier>!
EXTERNAL DATA <identifier> ! COVON DATA <identifier> !
COMVON | DUMWY

<segment cl ose decl aration> ::= CLOSE BASE

A segnment base declaration causes the conpiler to use the specified
register as the base address for the cells subsequently declared in the
bl ock in which the base declaration occurs. The segnent is termnated
either by the END of the block or by the subsequent appearance of a
segnent cl ose declaration. Upon entrance to this block, the appropriate
base address is assigned to the specified base register except for the
dumrmy base declaration and base declarations that specify BASE RO (cf.
4.3).

If the synbol DATA is preceded by any of the synbols GLOBAL, EXTERNAL or
COMMON, the corresponding identifier is associated with the data segment
to enable linking of segnents in different PL360 prograns [8,9,12].
Appear ance of t he synmbol sequence COVMON BASE causes a blank
identification to be associated with the segment (cf. 10.4).

5-1

Note: Dunmy base declarations permit the description of data areas
which are created during the execution of the PL360 program Any
i nteger register nmay be specified in a dummy base declaration. Wen RO
(or a synonym to RO) is specified in any base declaration, the
subsequent identifiers are understood to have di spl acenents and no base
regi ster (or index register).

5.3 Cell Declarations

<sinple byte type> ::= BYTE ! CHARACTER

<sinple short integer type> ::= SHORT | NTEGER

<sinple integer type> ::= |INTEGER ! LOGQ CAL

<sinmple real type> ::= REAL

<sinmple long real type> ::= LONG REAL

<T-type> ::= <sinple T-type> ! ARRAY <integer value><sinple T-type>
<T-cell declaration> ::= <T-type><item> ! <T-cell declaration>, <itenp
<itemp ::= <identifier>! <identifier> = <fill val ue>

<fill value> ::= <T-value> ! <string>!

@procedure identifier>! @@xprocedure identifier>!
@T-cell designator>! @&T-cell identifier>

<repetition list><fill val ue>)
<repetition list> ::= (! <integer value>(!
<repetition list><fill val ue>,

A cell declaration introduces identifiers and associates themw th cells
of a specified type belonging to the currently active base declaration
segnent (cf. 4.3). The scope of validity of these cell identifiers is
t he bl ock in whose heading the declaration occurs (cf. 4.1). Moreover
a declaration nmay specify the assignment of an initial value to the
introduced cell. This assignnment is understood to have occurred before
execution of the program

A cell may be initialized to numeric values, strings, relative or
absol ut e addresses. The nunber of bytes appropriate for the type of the
declared cell is taken for each (numeric) T-value. Strings are never
expanded or truncated; each character of the string occupies one byte,
initialization starting with the leftnost byte. A short integer or
integer type cell can be initialized to the relative address (i.e., base
regi ster and di spl acenent) corresponding to a T-cell identifier or to
t he relative (entry point) address corresponding to a procedure
identifier by nmeans of the @operator. The @operator also permts the
initialization of an integer type cell with the relative address (i.e.

i ndex register, base register and displacenent) of a T-cell designator
The @@ operator enables integer type cells to be initialized with
absol ute addresses corresponding to T-cell identifiers or to the entry

poi nt of procedure identifiers.

If a sinple type is preceded by the synbol ARRAY and an integer val ue,
say n , then the declared cell is an array (ordered set) of n cells of
the specified sinple type. An initial value list with m <= n entries
specifies the initial values of the first melenents of the array. A
list may be specified as a |list of sublists. Repetition of a sequence
of elements nmay be specified by making the sequence into a list and
preceding it by an integer value, say k , specifying the nunmber of tines
the list is to be used. |If no integer value precedes a list, it is used
once. Absolute addresses may not occur in lists where k > 1 . I nt eger
values n and k nust be positive.

Note: Boundary alignnent is performed for a cell declaration (according
to the sinple type) and not for each initializing value. Because
strings are never expanded or truncated, care is needed in initializing
wi th conbi nations of strings and other val ues.

Exanpl es:
BYTE fl ag
SHORT INTEGER i,j,k = 10S, m= (5), baddr = @asepoi nt

LONG REAL x,y,z = 27" 3L

ARRAY 3 | NTECER si ze = (36,23,37),parmist = (@&, @b, @rproc)
ARRAY 132 BYTE blank = 132(" "), buff = 33(" ",2("*")," ")
ARRAY f bsize LOG CAL area = fbsize(0)

5.4 Cell Designators

<T-cell designator> ::= <T-cell identifier>
I <T-cell identifier> (<index> / <integer val ue expression>)
I <T-cell identifier> (<index>)

<i ndex> ::= <integer val ue expression>

I <integer register expression>
I <integer register expression> + <integer val ue expression>
I <integer register expression> - <integer val ue expression>

<i nteger register expression> ::= <integer register>
I <integer register> + <integer register>
<i nteger val ue expression> ::= <integer val ue>

I <integer val ue expression> + <integer val ue>
I <integer val ue expression> - <integer val ue>

Note: The second form of <T-cell designator> may be specified at any
time, but only has nmeaning for the first <T-cell designator> of

<T-cell assignnent> ::= <T-cell designator> := <T-cell value>
and
<condition> ::= <T-cell designator> <relation> <T-cell val ue>

In these two cases, the integer value expression follow ng the slash (/)
specifies the nunber of bytes to be noved or conpared (cf. 6.3, 6.5).

Cells are denoted by cell designators. The designator for a particular
cell consists of the identifier associated with that cell, optionally
followed by an index or index/|ength. Wien an index is used, the
address of the designated cell is taken as the address associated with
the cell identifier plus the value of the index. |If alengthis to be
specified when no index is required, an index value of 0 nust be
speci fied before the slash; e.g., cell (0/length).

Note: Register RO or synonym (cf 5.1) nmust not be specified as an index
constituent. Depending upon the function with which the cell designator
is used and the declaration of the cell identifier, the index may have
0O, 1 or 2 integer register constituents. |f the cell identifier has no
base register associated with it, then the first integer register (if
any) in the index is understood to be the base register. |If the cel
identifier has a base register associated with it, and the context
permits an index register, then an integer register in the index is
taken as an index register. |If the identifier has no associated base
register and the context permts indexing, then two integer registers
may appear in the index and they are understood to be the base register
and i ndex register, respectively.

5-3

Exanpl es:

age B1(1)

si ze(8) B14(R2)
price(R1) MEM R3+R7+8)

i ne(R2+15) buf f (R1+R4- 2)
val (0/ 20) status(R1l/1en-1)

5.5 Cell Synonym Decl arati ons

<T-cell synonyne ::=
<T-type><identifier><synonynmous cell> !
<T-cell synonynr , <identifier><synonynous cell >
<synonymous cell> ::= SYN <T-cell designator> ! SYN <integer val ue>

Cell synonynms serve to associate synonynmous identifiers with previously
(i.e., preceding in the text) declared cells. The types associated with
t he synonymous cell identifiers need not necessarily agree.

If a synonynous cell is specified by an integer value, then that integer
val ue represents the displacenent (and possibly the base register and
i ndex register) part of the cell's machi ne address.

Exanpl es: | NTEGER al6 SYN a(16)
ARRAY 32768 SHORT | NTEGER nmenory SYN O
| NTEGER tinmer SYN #50

The foll owi ng exanpl e defines the standard integer identifiers:

| NTEGER MEM SYN 0, B5 SYN MEM R5), B10 SYN MEM R10),
Bl SYN MEMR1), B6 SYN MEM R6), B11 SYN MEM R11),
B2 SYN MEM R2), B7 SYN MEM R7), B12 SYN MEM R12),
B3 SYN MEM R3), B8 SYN MEM R8), B13 SYN MEM R13),
B4 SYN MEM R4), B9 SYN MEM R9), B14 SYN MEM R14),

B15 SYN MEM R15),

Not e: The synonym declaration can be used to associate several
different types with a single cell. Each type is connected with a
di stinct identifier.

Exanpl e: LONG REAL x = #4E0000000000000L
| NTEGER x| ow SYN x(4)

A conversion operation from a nunber of type integer contained in
register RO to a nunber of type long real contained in register FO1 can
now be denoted by

xlow := RO; FO1 := FO1 - FOl1l + x;
and a conversion vice-versa by

FO1 : = FO1 ++ #4E00000000000000L; x := FO1l; RO := xlow

No initialization can be achieved by a synonym decl arati on.

5-4

5.6 EQUATE Decl arations

<i nteger val ue synonynp ::=
EQUATE <i dentifier><synonynous integer val ue> !
EQUATE <identifier> SYN <string> !
EQUATE <identifier> SYN <regi ster nanme> !
<i nteger val ue synonymn, <i dentifi er><synonynous i nteger val ue>
<synonynmous i nteger value> ::= SYN <integer val ue> !
SYN <syn cell value> ! SYN <nobnadi c operat or ><i nt eger val ue> !
<synonynous i nteger val ue><arithmetic operator><integer val ue> !
<synonynous i nteger val ue><| ogi cal operator><integer val ue>
<synonynous i nteger val ue><shift operator><integer val ue>
<syn cell value> ::= <T-cell designator> - <T-cell designator>

I nt eger val ue synonyns serve to associate identifiers wth integer
val ues. These integer values are conputed at the time the declaration
is parsed and the identifiers thus associated can subsequently be used
as integer values (cf. 2.2.1, 3.3). Wen the difference of two cel
designators is specified, the cell identifiers nmust both have the sane
base register (cf. 5.2). The difference between their relative
locations within the segnent is taken as the associated integer val ue.
The cell designators nust not wuse index registers. The scope of
validity of these integer synonyns is the block in whose heading the
decl aration occurs (cf. 4.1).

See sections 6.1 and 6.2 for definitions of nonadic, arithmetic, |ogical
and shift operators.

Exanpl es: EQUATE a SYN 200, b SYN a+8, ¢ SYN 4
EQUATE d SYN a/c AND 4
ARRAY b BYTE x, vy
EQUATE e SYN y-x, f SYN e-c SHLL 2

Note: a = 200, b =208, c¢c =4, d=48, e =208, f = 816

5-5

SECTI ON 6. STATEMENTS
6.1 Register Assignments

<T-primary> ::
<K-primary> ::

= <T-value> ! <T-cell designator>

= <K-register>

A primary is either a value or the contents of a designated cell or
register.

<sinple K-register assignnent> ::=
<K-register> := <A-primry>
<K-regi ster> := <nonadi ¢ operat or ><A-pri nary>
<integer register> := <string> !
<integer register> := @<T-cell designator> !
<integer register> := @<procedure identifier>

A sinple register assignnent is said to specify the register appearing
to the left of the assignment operator (:=). To this register is
assi gned the val ue designated by the construct to the right of the
assi gnnent synbol . That designated value nmy be obtained through
execution of a nonadi c operation specified by a nobnadi ¢ operator.

<nmonadi ¢ operator> ::= ABS ! NEG! NEG ABS

The nonadi c operations are taking the absolute value, sign inversion,
and sign inversion after taking the absol ute val ue.

If a string is assigned to a register, that string nust consist of not

nor e than four characters. If it consists of fewer than four
characters, null characters (#00X) are appended at the Ileft of the
string. The bit representation of characters is defined in EBCD C
[4,5,6].

The construction with the synbol @is used to assign to the specified
regi ster the address of the designated cell or the entry point address
of the procedure.

The | egal comnbi nations of types to be substituted respectively for the
letters K and A in preceding and subsequent rules of this section are
given in Table 6. 1.

K A
i nt eger i nt eger
i nt eger short integer
real r eal
| ong real r eal
| ong real | ong real

Table 6.1 - Allowable Cell and Regi ster Type Conbi nati ons

Exanpl es of sinple register assignnents:

RO =i R2 = "xyz"

R2 = R10 F45 = NEG FO1
R6 = age R13 : = ABS hei ght
FO = quant (R1)

6.2

Regi ster Assi gnnent Expressions

<K-regi ster assignnent> ::= <sinple K-register assignhnment>
<K-regi ster assignnent> <arithnmetic operator> <A-primry>
<K-regi ster assignment> = <K-register>
<K-regi ster assignnment> = <A-cell designator>

<i nteger register assignnment> <logical operator> <integer prinary>
<integer register assignnment> <shift operator> <integer val ue>

!
!
!
!
!
I <integer register assignnent> <shift operator> <integer register>

<arithmetic operator> ::=+1 - 1 * 1 [1 ++ | --

<l ogical operator> ::= AND! OR ! XOR

<shift operator> ::= SHLL ! SHLA ! SHRL ! SHRA
A register assignnent is said to specify the sane register which is
specified by the sinple register assignnent or the register assignment
fromwhich it is derived. To this register is assigned the value
obtained by applying a dyadic operator to the current value of that
specified register and the value of the primary following the operator.
The operations are the arithmetic operations of addition (+) |,

subt

raction (-) , multiplication (*) , and division (/) , the logica

operations of conjunction (AND), exclusive and inclusive disjunction
(XOR, OR), and those of shifting to the left and right, as inplenmented
in the System 360. The operators ++ and -- denote Ilogical or
unnormal i zed addition and subtraction when applied to integer or
real/long real registers respectively. When an integer value is
specified following a shift operator, it nmust be nonnegative and |ess
than 31. The reverse-assignment operator (=:) specifies that the
contents of the assigned register are to be stored in the register or
cell follow ng the operator

Exanpl es of register assignnments:

Not e:

RO = R3
R1 =10 * x = X
R10 : =i + age - R3 AND size(8)
RO = R8 AND R7 SHLL 8 OR R6
F2 = 3. 1416
FO = quant (R1) * price(R1)
F45 .= F23 + FO1
1. The syntax inplies that sequences of operators, including
assignnment, are executed strictly fromleft to right. Thus
RL =R + Rl
is not equivalent to
RL :=RL + R
but rather to the two statenents
Rl :=R2;, Rl :=R1L +R1
This single aspect of PL360 provides many pitfalls for
begi nners.

2. Miltiplication and division with integer operands can only be
specified with a multiplicand or dividend register Rn, where n
is odd. The register Rmwith m= n-1is then used to hold the
ext ensi on to t he | ef t of the product and dividend
respectively. 1In the case of division, register Rm wll be
assi gned the resulting remainder.

6-2

Exanples: R3 := x * y +z
R2 is affected by the multiplication.
R5 := B1/15
R4 participates in the division and contains the
remai nder .
6.3 Cell Assignnents
<T-cell assignnment> ::= <A-cell designator> := <K-register>
I <T-cell designator> := <T-cell value>

I <T-cell assignnment> <logical operator> <T-cell val ue>
<T-cell value> ::= <T-cell designator>
I <T-val ue>
I <string>

In the first assignnent, the value in the K-register is assigned to the
designated A-cell. The allowable conbinations of cell and register
types are indicated in Table 6.1. Cells nay be indexed.

In the second assignhnment, the T-cell, T-value or string is assigned to
t he desi gnated T-cell. The third form is a |logical assignment
expression in which the assigned cell is logically conbined with the
specified T-cell, T-value or string. Cell designations nust not include
an index register (cf. 5.4). For cell to cell, the cell types nust be
identical or the assigned cell nust include a | ength specification (cf.
5.4). For string to cell, the entire string is noved to or logically

conbined with the assigned cell regardless of cell type when a length is
not specified, or the shorter of the string length or specified |I|ength
is used. For value to cell, the allowable conbinations of cell and
value are indicated in the follow ng table:

Not e: Length specifications should not be used for value to cell.

T-cel | T-val ue
| ong real | ong real
real real, integer
i nt eger i nteger, rea
short i nteger i nteger*, short integer
byt e i nteger*, short integer*, byte

Table 6.2 - Allowable Cell and Val ue Conbi nati ons

* unused portions of the T-val ue nust
be all 0 or all 1 bits (sign).

Exanpl es of cell assignments: i := RO
price(Rl) := FO
X = F67
price(Rl) := price(R2)
y := 30

] = "A"
z(0/5) := z XOR z(5)

6-3

6.4 GOTO Statenments and Label s
<GOTO statenment> ::= GOTO <identifier>
The interpretation of a GOTO statenent proceeds with the follow ng steps:

1. Consider the innernost bl ock containing the GOTO statenent.

2. If the identifier designates a program point wthin the
consi dered block, then program execution resunes at that
poi nt .

3. Oherwi se, execution of the block is regarded as term nated
and the innernost bl ock surrounding it is considered.

4. If this block is in the same program segnment as the
previous bl ocks, then step 2 is repeated.

5. Oherwise, the identifier is undefined (cf. 4.2).

Label definitions serve to label points in a block. The identifier of
the label definitionis said to designate the point in the block where
the label definition occurs. GOTO statenents may refer to such points
(cf. 4.1). The identifier can be chosen freely, with the restriction
that no two points in the sane block my be designated by the sane
identifier.

6.5 Conditions and Conpound Conditions

<condition> ::= <T-cell designator> <relation> <T-cell val ue>
I <byte cell designator>
I N <byte cell designator>
I <K-register> <relation> <A-primary>
I <integer register> <relation> <string>
I <relation>
I <integer val ue>
I N <integer val ue>

<relation> ::= =1 A=1 <1 <=1 >=1 >
A condition is said to be net or not met. In the first condition, the
T-cell preceding the relation is conpared to the T-cell, T-value, or
string specified after the relation. The conparison is | ogi ca
(unsi gned). The condition is met if the specified relation holds
bet ween the val ues of the conpared quantities. The sane restrictions

apply regarding conbinations allowable as apply to the second form of
T-cell assignnment (cf. Table 6.2). A condition specified as a byte

cell (or a byte cell preceded by ~) is net if the value of the byte
cell is #FF (or not #FF). The <condition consisting of a relation
enclosed by a register and a primary is nmet if the specified relation
hol ds between the current values of the register and the primary. When

an integer register is conpared to a string, the conparison is |ogical
(unsigned), and the string nust consist of not nore than f our
characters. |If it consists of fewer than four characters, the string is
right justified and null characters (#00X) are prefixed at the left to
forma four character string. The conditionis nmet iif the specified

relation holds between the register and the string. A condition
consisting of only a relationis net if the <condition code of the
processor (cf. 2.1.1) isin a state specified by the synbols of Table

6.3 on the followi ng page. A condition consisting of an integer value
(or an integer value preceded by ~) is net if the condition code of the
processor is in a state (or not in a state) specified by sumr ng the
i nteger conponents from Table 6.3 to arrive at the specified integer

6-4

val ue. Table 6.3 also contains predeclared integer value identifiers
whi ch may be used as specified (or preceded by " to obtain all states
except the specified state).

<comnbi ned condi ti on>

<al ternative condition>

<stat condition>

<conbi ned conditi on> AND <stat condition>

<conpound condition> ::

<conbi ned condition> ::

<alternative condition> ::= <stat condition>
| <alternative condition> OR <stat condition>
<stat condition> ::= <condition>

| <statenent> ; <condition>

A conpound condition is either of the formcl AND c2 AND ¢c3 ... AND c¢n
which is said to be net, if and only if all the constituent conditions
are met, or of the formcl ORc2 ORc3 ... ORcnh whichis said to be
met, if and only if at |east one of the constituent conditions is net.
Not e that each condition may be prefaced by a statenent and semi-col on.
In such a case, the statenment is done before the associated condition is
t est ed.

! identifier ! state !
I I !
! overfl ow ! 3 !
I I !
! on ! 3 !
! ! !
! of f ! 0 !
! ! !
! m xed ! 1 !
! ! !
! carry ! 1 !
! ! !
I integer conponent ! state !
I I !
! 8 ! 0 !
! ! !
! 4 ! 1 !
! ! !
! 2 ! 2 !
! ! !
! 1 ! 3 !
! ! !
! synbol ! state !
I I !
! = ! 0 !
! ! !
! No= ! 1 or 2 !
! ! !
! < ! 1 !
! ! !
! < = ! Oor 1 !
! ! !
! > = ! 0 or 2 !
! ! !
! > ! 2 !
! ! !

Table 6.3 - Condition Code States

6-5

6.6 |F Statenents

<IF statement> ::= <if clause> <statenent>

I <if clause> <true part> <statenent>
<if clause> ::= |F <conpound condition> THEN
<true part> ::= <sinple statenent> ELSE

The | F statenment specifies the conditional execution of statenents:
<if clause> <statenent>

The statenent is executed, if and only if the conmpound condition of the
clause is net.

<if clause> <true part> <statenent>

The sinple statenent of the true part is executed and the statenent is
skipped, if and only if the conpound condition of the if clause is net.
O herwise the true part is skipped and the statenment is executed. A
sinple statenment is any statement except an IF, WH LE or FOR statenent.

Exanpl es: IF RO <10 THEN RL := 1
IF F2 > _3.75 AND F2 < 3.75 THEN FO := F2 ELSE FO : = OR
IF < THEN SET(flags(1)) ELSE SET(flags(2))

Note: If the condition consists of just a relation or integer value,
then the decision is made on the basis of the condition code as
determ ned by a previous instructions.

Exanpl es: EX(RL, CLC(0,B2,B3)); IF = THEN ...
IE TM#80,flags): ON THEN ...

6.7 VWH LE Statenments

<WHI LE statenent> ::= <whil e cl ause><st at enent >
<whi |l e clause> ::= VWH LE <conpound condition> DO

The WHI LE statenment denotes the repeated execution of a statenent as
l ong as the conpound condition in the while clause is net.

Exanmples: WH LE FO < prize(Rl) DORL := R1L + 4
VWH LE RO < 10 DO
BEGNRO := RO + 1; FO1 := FO1 * FO1l; F23 := F23 * FO1
END

6-6

6.8 FOR Statenments

<FOR statenent> ::= <for clause><statenment>

<for clause> ::= FOR <integer register assignnment> STEP <increnent >
UNTIL <linmt> DO

<increment> ::= <integer val ue>

<limt>::= <integer primary> ! <short integer primry>

The FOR statenent specifies the repeated execution of a statement, while
the content of the integer register specified by the assignment in the
for clause takes on the values of an arithnetic progression. That
register is called the control register. The execution of a FOR
statement occurs in the foll ow ng steps:

1. the register assignnent in the for clause is executed;

2. if the increnent is not negative (negative), then if the
value of the control register is not greater (not |ess)
than the 1limt, the process continues wth step 3;

ot herwi se the execution of the FOR statenent is termni nated;
3. the statenent following the for clause is executed;
4. the increnent is added to the control register, and the
process resunes with step 2.

R1 0 STEP 1 UNTIL n DO STC(R1, |ines(R1))
R2 := Rl STEP 4 UNTIL RO DO
BEG N F23 := quant(R2) * price(R2);
FO1 := FO1 + F23;
END

Exanpl es: Egg

6.9 CASE Statenents

<CASE statenent> ::= <case sequence> END

<case sequence> ::= <case clause> BEG N !
<case sequence><st at enent >

<case cl ause> ::= CASE <integer register> OF

CASE statenents pernit the selection of one of a sequence of statenents
according to the current value of the integer register (other than
register RO) specified in the case clause. The statenent whose ordinal
nunber (starting with 1) is equal to the register value is selected for
execution, and the other statenments in the sequence are ignored. The
val ue of that register is thereby nodified.

Exanmpl e: CASE R1 OF
BEG N COMMENT interpretation of instruction code Ri;

FO1 := FO1 + F23;

FO1 := FO1 - F23;

FO1 := FO1 * F28;

FO1 := FO1 / F23;

FO1 : = NEG FO1,

FO1 : = ABS FO1,
END

SECTION 7. FUNCTI ONS
7.1 Function Decl arations

<function declaration> ::= FUNCTION <function definition>!
<function declaration> , <function definition>
<function definition> ::=
<identifier> (<format code> , <instruction code>)
<instruction code> ::= <integer val ue>
<format code> ::= <integer val ue>

Various data manipulation facilities in the 360 conputer cannot be
expressed by an assignment. To nmake these facilities available in the
| anguage, the function statenent is introduced (cf. 7.2), using an
identifier to designate an individual conputer instruction. The
function declaration serves to associate this identifier, which thereby
becones a function identifier, wth the desired conputer instruction
code, and to define the instruction fields which correspond fromleft to
right to the paraneters given in function statements. The format code
defines the format of the instruction according to Table 7.1 on the
follow ng page. The last two bytes of the instruction code define the
first two bytes of the instruction. The foll owi ng exanpl e defines the
standard function identifiers, which apart from TEST, SET and RESET,
were derived from the synbolic machi ne code used in assenbly | anguage

[7].

FUNCTI ON BALR(1, #0500) , MVI (4, #9200) , SRDL(9, #8C00)
CLC(13, #D500) MVN(5, #D100) , STC(12, #4200),
CLI (4, #9500), MVZ(5, #D300) , STH(12, #4000)
CVB(12, #4F00) NC(5, #D400) , STM 3, #9000) ,
CvD(12, #4E00), NI (4, #9400) , SVC(7, #0A00)
ED(5, #DE00) , OC(5, #D600) TEST(8, #95FF)
EDVK(5, #DF00) , O (4, #9600) TM 4, #9100) ,
EX(2, #4400) , PACK(10, #F200) , TR(5, #DC00) ,
| C(2, #4300), RESET(8, #9200) , TRT(5, #DD00) ,
LA(2, #4100), SET(8, #92FF), TS(8, #9300) ,
LH(12, #4800) , SLDA(9, #8F00) UNPK(10, #F300)
LM 3, #9800) , SLDL(9, #8D00), XC(5, #D700)
LTR(1, #1200), SPM 6, #0400) , XI (4, #9700),
MVC(5, #D200) , SRDA(9, #8E00)

7.2 Function Statenents

<function designator> ::= <function identifier>!

<function identifier> (<paraneter list>)
<paraneter list> ::= <paraneter> ! <parameter list> , <paraneter>
<paraneter> ::= <T-value> ! <string>! <K-register> !

<T-cell designator> ! <function designator>

If a function designhator is used as a paraneter, the first function
identifier nust correspond to an execute instruction. That is, the
first byte of the instruction code nmust have the val ue #44X. An exanple
is the predeclared identifier EX (cf. 7.1).

7-1

Exanpl es:

SET(f 1 ag) STM RO, R15, save)
RESET(f | ag) SVC(255)
LA(R1, "nmessage") | C(RO, flags(R1))
UNPK(3, 7, B2, wor ker) EX(RL, WC(O, l'i nes, buffer))
For mat Nurber of I nstruction Fields
Code Par anet er s 0O 8 16 32 48
0 0 [
1 2 I IRR
2 2 ! 'R LC !
3 3 I IRR C !
4 2 ! 'l CS! C !
S 3 ! 'l CS! C ! LC !
6 1 IR
7 1 rcsH
8 1 I I C I
9 2 ! IR ! Ic !
10 4 ! Pt C ! LC !
11 2 ! IR ICS !
12 2 ! IR C !
13 3 ! 'l CS! LC ! LC !
14 2 ! ! C ! LC !
15 1 ! ! LC !

Field Definition Codes:

K-regi ster

T-cell identifier (or designator in the 20-bit field) address
I nt eger val ue (the value is used directly

String in the instruction field)

T-val ue or string or function designator (the address of the
value is used in the instruction field)

ro—0=x

Table 7.1 - Instruction Format

7-2

SECTI ON 8. PROCEDURES
8.1 Procedure Decl arations

<procedure declarati on> ::= <procedure headi ng> ; <statenent>
<procedure headi ng> ::= <sinple procedure headi ng> !

COMMON <si npl e procedure headi ng> !

<separate procedure headi ng> !

<separate procedure headi ng> BASE <i nt eger register>
<separate procedure heading> ::=

SEGMVENT <si npl e procedure headi ng>

GLOBAL <sinple procedure headi ng> !

EXTERNAL <sinpl e procedure headi ng>
<si npl e procedure heading> ::=

PROCEDURE <i dentifier> (<integer register>)

A procedure declaration serves to associate an identifier, which thereby
becomes a procedure identifier, with a statenment (cf. 4.1) which is
called a procedure body. This identifier can then be used as an
abbreviation for the procedure body anywhere within the scope of the
decl arati on. When the procedure is invoked, the register specified in
parentheses in the procedure heading is assigned the return address of
t he i nvoki ng procedure statement. This register nust not be RO.

If the synbol PROCEDURE is preceded by the synbol SEGVENT, GLOBAL, or
EXTERNAL, the procedure body is conpiled as a separate program segnent.
If the synbol is GLOBAL or EXTERNAL, the corresponding identifier is
associated wth the procedure segnment to enable |inking of segments in
possibly different PL360 progranms [8,9,12]. These synbols have no ot her
influence on the nmeaning of the program with the exception of
restricting the scope of GOTO statenments (cf. 4.2, 6.4 and 10.4). If a
base register is specified in the procedure headi ng, the procedure body
is conpiled using the specified register for the program segnment base

register (cf. 4.2); otherwi se, the current program base register is
used (usually this is R15, however, cf. 10.1.5). This register nust
not be RO. When the procedure is invoked, the specified (or assuned)

base register is assigned the entry point address.

The instructions associated with the statenent of both a sinple
PROCEDURE and COVWMON PROCEDURE are local to the program segment
contai ning these procedure declarations. However, a COVWON PROCEDURE
also declares the procedure identifier as an additional entry point to
the program segnment. Such entry points are normally <called upon from
separately conpiled prograns through an EXTERNAL PROCEDURE decl arati on

Exanpl es:
PROCEDURE NEXTCHAR(R3) ;
BEANIF R5 <71 THEN RS := R5 + 1 ELSE
BEG N RO := @ARDS; READ, R5 := R5--R5;
END;
| C(RO, CARD(R5)) ;
END

PROCEDURE SLOWSORT (R4) ;
FOR RL := 0 STEP 4 UNTIL N DO

BEG N RO : = A(R1);
FOR R2 := Rl + 4 STEP 4 UNTIL N DO
IF RO < ACR2) THEN BEGN RO := A(R2); R3 := R2; END
R2 := A(Rl); A(Rl) := RO; A(R3) := Rz

END

EXTERNAL PROCEDURE SEARCHDI SK (R14) BASE R12; NULL

Note: The code corresponding to a procedure body is termnated by a
branch-on-register instruction specifying the register designated in
parenthesis in the procedure heading. A procedure statenent places a
return address in this register when invoking the procedure. |In order
to return properly, the programer nust either not change the contents
of that register, or explicitly save and restore its contents during the
execution of the procedure.

8.2 Procedure Statenents

<procedure statenent> ::= <procedure identifier>!
<procedure identifier> (<integer register>)

The procedure statenent invokes the execution of the procedure body
desi gnated by the procedure identifier. A return address is assigned to
the register specified in the heading of the designated procedure
declaration. |If an integer register is specified in the procedure
statenent, on return from the procedure the contents of the invoked
procedure's program base register (usually R15) are transferred to the
specified integer register and the condition code is set by the
transfer. This facilitates the convention of passing return codes in
the invoked procedure's program base register (usually R15, cf. 8.1,
10. 1. 5).

SECTION 9. THE RUN-TI ME LI BRARY

This section describes a set of global procedures witten in PL360 which
perform commonly needed tasks. These subroutines are predeclared as

external procedures in the PL360 conmpiler. |In all cases, the procedure
linkage is done with register R14, and R15 should contain the address of
the entry point wupon entry. At Stanford, t he i nkage edi tor

automatically adds the required subroutines if you are wusing the
cat al oged procedure PL360CG

9.1 Standard Procedures

A set of standard procedures is defined for elenentary unit record input
and out put operations (the first set below), for elenentary disk and
tape input and output operations using sequential files (the second
set), and for ease in communicating with the operating system (the
last). The inplicit procedure declarations are as foll ow

EXTERNAL PROCEDURE READ (R14) BASE R15; NULL;
EXTERNAL PROCEDURE WRI TE (R14) BASE R15; NULL;
EXTERNAL PROCEDURE PAGE (R14) BASE R15; NULL;
EXTERNAL PROCEDURE PUNCH (R14) BASE R15; NULL;
EXTERNAL PROCEDURE PRI NT (R14) BASE R15; NULL;

EXTERNAL PROCEDURE OPEN(R14) BASE R15; NULL;
EXTERNAL PROCEDURE GET(R14) BASE R15; NULL;
EXTERNAL PROCEDURE PUT(R14) BASE R15; NULL;
EXTERNAL PROCEDURE KLOSE(R14) BASE R15; NULL;

EXTERNAL PROCEDURE CANCEL(R14) BASE R15; NULL;

Sui tabl e externally conpiled or assenbl ed routines nust be provided in
the link/loading process; the specifications of these routines are:

READ Read an 80 character record fromthe systeminput data set and
assign that record to the nmenory area designated by the
address in register RO. Set the condition code to 2 if no
record could be returned due to an end of file condition
otherwise, to 0. (ABEND 95 or 96)

WRITE Wite a 133 character record to the systemlisting data set.
A 132 character record is taken from the nenory area
designated by the address in register RO and prefixed by an
appropriate carriage control character. A control character
indicating a new page is used after 60 |lines have been witten
on a page, otherwi se a control character indicating the next
line is used. The first line is witten on a new page.
(ABEND 95)

PAGE G ve the next output record transnmitted by a WRITE to the
system listing data set a control character indicating a new
page.

PUNCH Wite the 80 character record designated by the address in
register RO to the system punch data set. (ABEND 95)

PRINT Wite the 133 character record designated by the address in
register RO to the system listing data set. The calling
program provides a USASI control character as the first
character. (ABEND 95)

OPEN At entry, register RO nust be O if the file is to be an output
fileor 1if the fileis to be an input file. Regi ster R2
nmust contain the address of an 8-byte area containing a unique
file name. (This is taken as the ddnane in an OS environment
and as the synbolic file name in a DOS environnent.) In an OS
environment, register Rl nust contain the address of a
100-byte full word-aligned area which, follow ng the open
will contain the data control block. In a DOS environnent,
register RL nust contain the address of a separately assenbl ed
DTF table which describes the file. The file is nmade ready
for input/output operations. All registers are restored.
(ABEND 97)

GET At entry, register RL nust contain the address of a table
whi ch describes the file. (In an OS environnment this table is
called the data control block and in a DOS environnent it is
called the DFT table.) Upon return, register RL contains the
address of the next logical record in the file. (The first
call of GET returns with the address of the first |1ogica
record.) Wen an end-of-file is reached, the condition code is
set to 2; normally it is set to 0. Al registers, except Ri,
are restored.

PUT At entry, register RlL must contain the address of a table
which describes the file. Upon return, register Rl contains
the address of an area in which the next logical record to be
output is to be built. Al other registers are restored.

KLOSE At entry, register RL nust contain the address of a table
which describes the file. The corresponding file is closed
and no further input-output operations can be performed wth
it unless it 1is opened again. In an OS environnent, the
contents of register RO denoted by (RO) is also an input
parameter to this subroutine: if (RO) =0, the DI SP option
of the DD statenent is wused to determne final volune
positioning; if (RO) <= 0, the volunme is positioned at the
end of the data set. |If (R0O) >0, the volune is positioned
at the beginning of the data set. Al registers are restored.

CANCEL The job, including all future job steps, is cancell ed.

Al'l of these procedures assume that register R13 contains the address of
an 18 word save area (cf. 4.4) and all registers are restored before
return. Each of the data sets is opened upon initial reference and is
cl osed by the operating systemat the end of a job step.

9.2 Nunber Conversion Procedures

The two subroutines described below are wused to convert the EBCDIC
representation of a nunmber into an internal representation of that
nunmber, or Vi ce-versa. A slightly nore conventi onal nunber
representation is used by these routines than that of the PL360 | anguage
(cf. 3). The nunbers nust satisfy the foll owi ng syntax:

9-2

<l ong conpl ex nunber> ::= <long real nunmber> + <imagi nary nunber> L

<conpl ex nunber> ::= <real nunber> + <imagi nary numnber >
<i magi nary nunmber> ::= <real nunber> | ! <integer nunber> |
<long real nunmber> ::= <real nunber> L ! <integer nunber> L
<real nunber> ::= <unscaled real > ! <unscal ed real > <scale factor> !
<i nteger nunber> <scale factor> ! <scale factor>
<unscal ed real > ::= <integer nunber> . <integer numnber>
<i nteger nunber> ! <integer numnber>
<scal e factor> ::=" <integer nunber> ! ' <sign> <integer nunber>
<integer nunber> ::= <digit> ! <integer nunber> <digit>
<sign> ::=+ 1 -

Nunbers are interpreted according to the conventional decinmal notation.
A scale factor denotes an integral power of 10 which is nultiplied by
the unscal ed real or integer nunmber preceding it. A nunber can have no
i mbedded bl anks and nust be term nated by a blank. These procedures are
predeclared in a manner similar to those described in Section 9. 1.

The parameter passing conventions for the two conversion subroutines are
as follows:

VALTOBCD Thi s procedure converts an internally stored value to an EBCDIC
representation. At entry,

R1 contains the address of an area to receive the EBCD C
representation

R2 indicates the type:

i nt eger

real

| ong real

compl ex

| ong conpl ex

R3 contains the field length (>= 1)

abhwNBE
I mmn

The value to be converted is in RO, FO, FO1, FO and F2, or FO1
and F23, depending on the type (in that order).

A return code is left in R15:

0 -> successful conversion

1 ->field size too small

2 ->invalid field size
When the field size is too small to receive the value, the
fieldis filled with stars (*).

Al'l registers, except R14 and R15, are preserved.

BCDTOVAL This procedure converts an EBCDIC representation of a number to
an internal nunber. At entry,

R1 contains the address of the EBCDI C representation (possibly
preceded by bl anks)

R2 indicates type (see VALTOBCD)

The resulting value is left in RO, FO, FO1, FO and F2, or FO1

and F23, dependi ng upon the type.

9-3

A return code is left in RL5:
0 -> successful scan
1 ->invalid character in input string
2 ->mssing "I" on imaginary part
3 -> nonbl ank term nator
4 -> nunber scanned is not assignnent conpatible
(e.g., a decimal point is found when R2 = 1)
5 ->integer too large

Upon exit, Rl contains the address of t he term nat or
Regi sters R2-R13 are restored.

9.3 Data Manipul ati on Procedures

The first

procedure described in this section does an in-core indirect

sort using |ogical conparisons. The second compani on routine searches a
sorted list for a specified el enent. Nei t her procedure is predeclared.

SHELSCRT

Bl SEARCH

This procedure sorts character data. The Shell Sort technique
is used. At entry, registers RO-R3 nust be set as follow

t he nunber of items to sort

t he address of the index array

the nunber of the first byte of the key in each
record on which the sort is to be done (R2 >= 1)
t he nunber of bytes in the key on which the sort
is to be done

3 SRE

The index array is a list of 4-byte integers containing the
address of the itens to be sorted. The actual sort is done on
the elenents of the index array and not the records thensel ves.
That is, only the order of the elements of the index array is
nodified by the procedure. Al'l registers, except Rl4, are
rest or ed.

This procedure |ocates an elenent in a sorted list. At entry,
regi sters RO-R4 nmust be set as follow

RO = the nunber of entries in the sorted table

R1 = the address of the index array (see SHELSORT)

R2 = the nunber of the first byte of the key field in
t he records

R3 = the nunber of bytes in each key field

R4 = the address of the key for which you are | ooking

At exit, Rl contains the address of an elenent in the index
array that points to a record that contains the desired key.
If no match is found, RL = 0.

Al'l registers, except Rl and R14, are preserved.

9-4

SECTI ON 10. COWPI LER CONTRCOL FACI LITY
10.1 Instructions to the Conpiler

The conpiler accepts instructions inserted anywhere in the sequence of
i nput records. These instructions affect subsequent records. A
compiler instruction record is narked by the character '$ in colum 1
and an instruction in colums 2-72.

10.1.1 Listing Control

$LI ST Li st source records (initial option).

$NOLI ST Do not |ist source records.

$PAGE Start a new page with the next listing record.

$TITLE Start a new page with the next listing record, and use the
contents of columms 10 through 62 as the title for that and
subsequent pages.

$STITLE This directive provides a sub-title line. The sub-title wll
remain in effect wuntil the next $TITLE or $STITLE card.
$STI TLE cards may change the sub-title wthout affecting the
mai n $TITLE. $STITLE al so causes a page ej ect.

$SPACE # This directive allows the user to line space a listing by #
lines where # is a nunber froml1l to 99. |If # is blank, then a
single line space is assunmed. |If the nunmber of |ines remaining
on the page is less than #, then a page eject is done instead
of |ine spacing.

$EJECT This directive is equivalent to $PAGE.

$ON This directive enables the printing of all $-control cards
except $TITLE, $STITLE, $EJECT, $PAGE, and $SPACE

$OFF This directive disables the printing of all $-control cards.
This is the default condition at the start of conpilation.

10.1.2 Listing Options

$XREF Al'l subsequent instances of identifiers are listed in an
al phabetical cross-reference Ilisting together wth the line
nunmbers at which they are defined or referenced in the source
program The <cross-reference listing follows the program

listing if $LIST is in effect at the end of the program |If
there is not enough free storage to allocate the cross-
reference tables, the $XREF instruction is ignored. The
cross-reference listing will be single spaced unless $XREF 2 is
specified to double space the listing.

SNOXREF This causes the previous option to be turned off (initial

option). Any accunulated cross-references wll be listed
following the program as descri bed above for $XREF.

10-1

$0

$1

$2

$3

Print a summary line at the <close of each segnent (initial
option).

Print a summary line and list of external synbol dictionary
entries at the close of each segnent.

Li st the declared identifiers and associ ated value as each is
declared, as well as the information specified in $1.

Li st the object text in hexadecimal notation at the close of
each segnment, as well as the information specified in $2.

10.1.3 Operating System Control

$Cs

$DOS

10.1. 4

SXYY#

Subsequent PL360 prograns which are statenments are conpiled
with entry and exit instruction sequences conforning to the
programcal li ng conventions of an OS environnent. This is a
default option when the conpiler is used with the CS interface.

Subsequent PL360 prograns which are statenments are conpiled
with entry and exit instruction sequences which conformto the
program cal | i ng conventions of a DOS environment. This is the
def aul t option when the conpiler is wused with the DOS
interface.

Identification

This directive nust precede the first non-control card. Al
conpi l er generated segnment names will comence with XYY rather
than SEG and all object deck cards are identified by XYY in
colums 73 through 75 followed by the letter N and a four digit
nunber . X signifies any alphabetic and Y any al phanuneric
characters. (cf. 10.4).

10.1.5 Program Base Register Contro

$BASE=xx This directive nust precede the first non-control card.

Program segnments following this directive are conpiled with xx
taken as the program base register. This includes main
prograns, global procedures, segnment procedures, and external
procedures (which do not specify BASE). Procedure calls to
such segnments autonatically set the specified base register to
the entry point address. The decimal number xx nust be between
01 and 15 . Prograns which are statenents nust not be conpiled
with base registers 13 or 14. The initial option is xx=15, and
all predeclared external procedure declarations always have
base register R15. It is recomended that this conpiler
directive only be wused for prograns which nmake use of SVC
instructions that do not preserve the contents of register R15.

10-2

10.1.6 (Object Deck Contro

$CGEN If this directive precedes the first error detected (if any),
t hen object decks are still produced if any have been
request ed. O herwi se object decks are suppressed after

encountering an error.

$NOGO Conpi | e, but suppress the GO step.

10.1.7 Copy Facility

$COPY ddnane

$COPY ddnanme(nmenber)
These control cards specify that a sequential data set or
menber of a partitioned data set is to be copied into the
conpilation. The conpiler tenporarily suspends input from the
standard input nmediumand continues conpilation with the data
set defined by the $COPY control card. Wen end-of-information
is encountered on that data set, conpilation continues fromthe
standard input with the card image imediately following the
$COPY control card. Note: $COPY is ignored in the data set
being copied, i.e., $COPY may not nest. As nany $COPY control
cards as desired may occur in the standard input. \Wen
conpi | i ng under ORVYL, ddname or nenber is assumed to be the
ORVYL data set name. An account nunber may follow to indicate
a data set belonging to a different account.

10.1.8 Conditional Conpile Directives

At the start of conpilation of each program (cf. 4.1), an array of
flags is reset by the conpiler. The followi ng directives use this
array. The array flags are specified by individual characters in the
directives, and any characters may be used, including blank. Upper and
| ower case characters are considered equivalent. The directives nust be
in uppercase in colums 1 through 4 on the control card.

$SET a where 'a' is any character in colum 6.
This directive sets the "a' flag.

$IFT a b where "a' is any character in colum 6, and 'b' is any char-

$IFF a b acter in colum 8.
These directives examne the "a' flag. |If the 'a" flag is
set for $IFT, or reset for $IFF, this directive takes no
action and conpil ation continues nornally.
If the "a'" flag is reset for $IFT, or set for S$IFF, the
compil er skip-reads source cards until a $END directive is
encountered with its 'b' character natching t he 'b'
character of the $IFT or $IFF. Conpilation then continues
fromthat point.
Note: '"$IFF a b' is an unconditional skip to "$END b' if
"$SET a' has occurred. '$IFT a b’ is an unconditional skip
to "$END b' if '$SET a' has not occurred.

$END b where 'b' is any character in colum 6.

This directive termnates $IFT or $I FF directives.

10-3

$RESET a where 'a' is any character in columm 8.
This directive resets the 'a' flag.

Exanpl es of Conditional Conpile:
1. $SET z

$IFT 2
COWENT Conpile this if "Z' is $SET,

$END
$IFF Z
COWENT Conpile this if 'Z'" is not $SET;

$END

2. $SET 1

$IF
$IF

mm

COWENT Conpile this if "0" or "1' or '2' is $SET,
$END Q
3. $SET -

$SET +

$IFT +
$IFT -
COWENT Conpile this if both "+ and '-' are $SET,

$END

10.2 Conpiler Listing Qutput

If listing is specified, each non-control record is listed as it is
read. Source records in which errors are detected are always |isted.
Four sets of nunbers appear at the left of each Iine. The first set

consists of the ~current internal program segnent nunber (in decinmal)
foll owed by the program object code relative address (in hexadecinal);
t he second set, of the current internal data segnent nunber (in decinal)
and the data relative address (in hexadecimal). The fifth nunber is the
statement nunber of the source record. The final nunber, the BEG N END
| evel count, shows the excess of BEG N synbols over END synbols at the
beginning of the next line follow ng an occurrence of BEG N END. This

count is only printed when the BEG N END | evel changes. In addition
each page begins wth a heading which includes the page nunber, date,
time, and an optional title (cf. 10.1.1). Exanpl es of conpiler

listings are given in Appendi x A

10-4

10.3 Err

or Messages of

Errors detected by the

verti cal

50 errors,

count ed
and their

Error
Nunmber

00
01

02

03
04
05
06
07

08

09

10

11
12
13
14

15

16

17

18

t he Conpil er

conmpiler are indicated by a nessage and a

bar bel ow the point where the error was detected. After about

a nmessage is provided, and further diagnostic nessages are
but not listed. The following is a list of error diagnostics
meani ngs:
Message Meani ng
SYNTAX The source programviol ates the PL360 syntax.

VAR M X TYPES

FOR PARAMETER

REG ASS TYPES

BIN OP TYPES

SH FT OP

COVPARE TYPES

REG TYPE OR #

UNDEFI NED | D

MJULT LAB DEF

EXC I NI VALUE

NOT | NDEXABLE

DATA OVERFLOW

NO OF ARGS

| LLEGAL CHAR

MJLTI PLE 1 D

PROGRAM OFLOW

I NI TI AL OFLOW

ADDRESS OFLOW

NUMBER OFLOW

The types of operands in a variable assignnment
are inconpatible.

In a for clause, the register is not an integer
register, or the limt is not a register, cell,
or nunber of the integer types.

The types of the operands in a regi ster
assi gnnent are i nconpati bl e.

The types of operands of an arithnmetic or
| ogi cal operator are inconpatible.

A real instead of an integer register or nunber
is specified in a shift operation.

The types of operands in a conparison are
i nconmpati bl e.

Either the type or the nunmber of the register
used is incorrect.

An undecl ared identifier has been referenced.
The identifier is treated as if it were "R1l'.
This nay generate other errors.

The sane identifier is defined as a |abel nore
than once in the sanme bl ock

The nunber of initializing values exceeds the
t he nunber of elements declared in an array, or
a string attenpts to initialize beyond the
declared linmts of a variable or array.

An index register is not allowed for the cel
designator in this context.

The address of the declared variable in the
data segnent exceeds 4095.

An incorrect nunber of argunents is used for a
function.

An illegal character was encountered; it is
ski pped.

The sane identifier is declared nore than once
in the same block. This occurrence of the
identifier is ignored.

The current program segnment is too |arge. It

nmust be resegnent ed.

The area of initializing data in the conpiler
is full. This can usually be circumvented by
suitabl e data segnmentation or by re-ordering
initialized data within the segnent.

The nunber used as index is such that the
resulting relative address is less than O or
greater than 4095.

The integer nunber is too large in nagnitude.

10-5

20 M SSI NG . An end-of-file is encountered before a '.'
terminating the program The problem nay be a
m ssing string quote.

21 STRING LENGTH The length of a string is either O or greater
t han 256.

22 AND/ OR M X A conpound condition nmust not contain both ANDs
and ORs.

23 FUNC DEF NO. The format nunber in a function declaration is
illegal.

24 | LLEGAL PARAM A paraneter is inconpatible with the specifi-
cations of the function

25 NUVBER A nunber has been used that has an illegal type
or val ue.

26 SYN M X Synonym decl arations cannot m X cell and

regi ster declarations, or T-cell designators
have different base registers.

27 SEG NO OFLOW The maxi nrum al | owed segnment nunbers has been
exceeded. The limt is generally set at 255.

28 | LLEGAL CLOSE A segnent close declaration is encountered when
no data segnent is open in the corresponding
bl ock head.

29 NO DATA SEG A variable is declared with no open data
segnent. A dummy data segnent is opened.

30 ILLEGAL INIT Initialization is specified in a comopn data

segnent or replicates an absol ute address.

At the end of each program segnent, all occurrences of undefined | abels
are listed with an indication of where they occurred.

10.4 Conpiler oject Program Qut put

The PL360 conpiler is designed to be wused in conjunction Wi th
i nk/1 oader progranms which resolve synbolic cross-references between the
segnents of one or nore prograns. Exanples of prograns capabl e of such
resolution are the MIS | oader [8], the IBM OS |inkage editor or | oader
[9], and the IBM DOS |inkage editor [11]. The remai nder of this section
uses the term nol ogy of these prograns.

The output of the PL360 conpiler is a sequence of object nodul es. Each
obj ect nodul e contains a single control section corresponding to a PL360
segnent . It consists of 80 character records in the standard format of

external synbol dictionary (ESD), text (TXT), relocation dictionary
(RLD) and an end (END) (cf. [10] and Appendix B).

Every PL360 segnent (except a dunmy data segnment) is associated with an
obj ect nmodule in the follow ng fashion

1. If the synbol SEGMVENT appears in the SEGVENT declaration, an
object nmodule is produced for this segment; the control section
nane i s generated by the conpiler as described bel ow

2. If the synbol GLOBAL appears in the segnment declaration, an
object nmodule is produced for this segnment; the control section
name is the first 8 bytes of the identifier appearing in the
decl arati on.

10-6

3. If the synbol EXTERNAL occurs in the segnent declaration, no
object nmodule is produced; instead the first 8 bytes of the
identifier in the declaration is assunmed to be the nane of a
control section independently generated and is used to indicate
this in the object nmodule created for the segnent containing the
external declaration.

4. |If the synbol COVMON appears in the segnment declaration then an
obj ect nodule is created in the formof a | abeled or blank common
control section according to whether the comopn declaration
contains an identifier or not.

In all cases a control section has a single entry point; the entry point
name and the control section name are identical. 1In the case of a PL360
programwhich is a statement, a transfer address to the entry point is
provided in the END card of the object nodule for the inplicit segnent
corresponding to this statement. This transfer address is wused by a
| oader to determi ne where to begin execution

The task of the Ilinkage editor/loader includes matching global and
ext er nal decl arati ons, i nserting absol ute address constants and
completing tables of segnent base addresses, contained wthin each
control section for a program segnent, in accordance with the externa
synbol dictionary and relocation dictionary generated by the conpiler
for that control section

For PL360 programs which are statenents, control section names generated
by the conpiler for SEGQVENT decl arations are of the form SEG\nnn where
nnn is the decimal internal segnment nunber. |f the PL360 programis a
gl obal procedure, the first three characters of the procedure identifier
(extended on the right by NN if necessary) are used in place of the
characters 'SEG. These nami ng conventions may be overrul ed by use of
the conpiler directive $XYY# (cf. 10.1.4).

Each END card of the object nodul e output of the conpiler has the nane
"PL360" followed by the date and time of conpilation

10-7

SECTION 11. LI NKAGE CONVENTI ONS

Al though PL360 was designed for witing logically sel f - cont ai ned
prograns, it is possible to communicate wth separately conpiled
prograns if appropriate |inkage and coding conventions are observed.
These conventions are sunmari zed bel ow.

11.1 Calling External Routines from PL360

Addr esses which correspond to external synbolic names and which are to
be supplied by linkage editing can be specified by the external or
conmmon decl arations of PL360. Entry to the block containing a data
segnent decl aration causes the specified base register to be | ocaded with

the corresponding address. External names appearing in procedure
declarations are assuned to designhate entry points to subroutines. In
such decl arations, the procedure body is normally the statement NULL.
The call of the external procedure P2 from the procedure Pl is

equi valent to the foll owing 360 Assenbl er codi ng:

USI NG P1, 15

L I, =V(P2)
DROP 15

BALR n, |

USI NG *, |

L 15, =A(P1)
USI NG P1, 15
DROP n

This linkage inplies the followi ng restrictions upon the called routine:

1. At entry, the base register specified (or assumed) in the
external procedure declaration (lI) contains the address of
the entry point, unless | = n.

2. At entry, the register specified in the external procedure
decl aration (n) contains the return address.

3. Before return, the return address nust be restored to that
desi gnat ed regi ster

Any additional, non-conflicting conventions nmay be established by the
pr ogr amer .

If the called procedure (P2) uses R15 to return information to the
calling routine (Pl), the procedure statement in Pl is usually of the
formP2(Rm , indicating that the return |linkage nmust nove the contents
of R15 to Rm, thus setting the condition code before re-establishing
the base address of P1 in R15. The equival ent 360 Assenbl er coding for
this type of call differs fromthat already given only in the last four
i nes which becone

LTR m15
BALR 15,0

USI NG *, 15

L 15, =A(P1)
USI NG P1, 15

11-1

CS type linkages are facilitated by the fact that if the <calling PL360
program is a statenment, the first 18 words of the inplicit data segnent
(base register R13) are available for use as a save area (cf. 4.4), and
by the @@ operator which facilitates the construction of OS-type
parameter lists at conpile tine.

11.2 Requesting Supervisor Services

SVC instructions are available in PL360 prograns through the function
st at enent . It should be noted, however, that in many operating systens
the contents of R15 are destroyed by execution of sone SVC instructions.
In such cases, it is essential that saving and i medi ately restoring R15
be explicitly programmed. This tedious job of preserving the contents
of the program base regi ster can be avoi ded by using the $BASE conpil er
instruction (cf. 10.1.5), or by explicitly specifying a base register
in the procedure heading (cf. 8.1).

11.3 Calling PL360 Procedures from External Routines

Synbol i ¢ names and correspondi ng addresses to be made known to routines
external to the PL360 programare specified by the global and common
decl arati ons of PL360. dd obal nanes specified in procedure declarations
are associated with the corresponding procedure entry point. The
external invocation of PL360 procedures nust satisfy the follow ng
restrictions:

1. At entry to a PL360 procedure, the procedure base register (usually
R15, but cf. 8.1, 10.1.5) nust contain the procedure entry address
and the register specified in the procedure declaration nust contain
the return address.

2. At exit froma correct PL360 procedure, the register specified in
t he procedure declaration will contain the return address.

In addition, the foll owing points should be noted:

1. If the PL360 programwas conpiled froma block and not a global
procedure decl aration,

a. the synmbolic nane of the entry point wll normally be
SEGN001, the synmbolic nane of the inplicit data segnent
(wWwth base register R13) wll norrmally be SEGN00 (cf.
10. 1. 4) ;

b. the return register will be R14

c. at entry, R13 nust contain the address of an 18 word save
area, if the $0S option is in effect (cf. 4.4, 10.1.3)

d. at exit, all registers are restored fromthis save area with
R15 set equal to zero (R15=0)

2. dobal and external nanmes violate the rules of scope established by
the PL360 block structure (cf. 2.2.1, 4). By pairing global and
external declarations, a name can be given arbitrary scope.
Recursive procedures and co-routines can be progranmed using this
feature; however, this ability should be wused carefully and

sparingly.

11-2

Consi der the follow ng exanpl e:

GLOBAL PROCEDURE pl (R1) BASE R7; The procedure p2 can be entered
BEG N GLOBAL DATA dl1 BASE R10; with the base register for data
| NTEGER a; segnent dl incorrectly | oaded,
COMMON PROCEDURE p2 (R2); since it is possible to bypass
BEGAN RO := a; the entry code of the block con-
END; taining the base declaration. 1In
COMMVON PROCEDURE p3 (R2); procedure p3, however, the exter-
BEG N EXTERNAL DATA dl1 BASE R10; nal declaration causes register
| NTEGER a; | oadi ng, but all declarations

RO : = ga; nmust be repeated. In general
END; procedur es whi ch are to be
RO :=a + 1; entered i ndependently should be
END. decl ar ed as separate prograns

whenever possi bl e.

It should be noted that the registers specified in corresponding gl obal
and external procedure declarations nust be identical while the
regi sters specified in correspondi ng global, external, and compn data
segnent decl arations may be different.

Al so note that when common and external procedures are paired, return

registers mnust be identical and any base register specified in the

external declaration nmust match the base register of the global or

segnent procedure contai ning the conmon procedure declaration. Thus,
EXTERNAL PROCEDURE p2 (R2) BASE R7; NULL;

woul d be the proper declaration for p2 in a separately conpiled segnent
consi dering the above exanpl e.

11-3

SECTI ON 12. PL360 AS AN ORVYL LANGUAGE PROCESSCOR

This Section contains a brief narrative description of how one uses the
interactive version of PL360 which runs under the ORVYL tinme-sharing
monitor [12]. This version is mde possible through a special
ORVYL-PL360 interface nodule witten in Assenbly Language using the
ORVYL macro instructions [12].

12.1 Using the PL360 Compiler with ORVYL
This Section assunmes that the ORVYL systemis being used at Stanford
where the ORVYL-PL360 conpiler is saved as an ORVYL unload file. To use
it, just type:

? PL360

You will then receive the nessage:

-WELCOME TO PL360, Joe User
DECK?

I f your account has been activated for ORVYL files, then you can type
"YES" and PL360 will respond wth:

FI LE NAME?

You shoul d then type the nane of an ORVYL file in which PL360 should
pl ace the object nodules fromthe subsequent conpilation. This file can

be either new or old. Appending " SCR' to the file name will cause an

old file to be scratched for reuse; otherw se, you will be pronpted:
SCRATCH?

A "NO' response will cause the file nam ng process to be repeated. The

next thing PL360 asks is:
LI STI NG?

If you respond "YES", then you will again be asked to supply an ORVYL
file to receive the PL360 Conpiler list output. PL360 then asks:

-2

You can now type WYLBUR conmmands which will be passed to and executed by
WYLBUR. You can continue to pass commands to WLBUR (for exanple,
collect lines, edit Ilines, wuse files, «copy files, etc.) until your
WYLBUR wor ki ng data set contains the PL360 progran(s). You then type
"COWPI LE" immediately after a -? pronpt and PL360 will begin conpiling
t he progran(s) contained in your WYLBUR worki ng data set.

Any error nmessages and the line on which they occur are typed at the
terminal as the conpilation proceeds. Each tinme a segnent is closed a
nmessage is typed at the termnal. Wen conpiling froma WLBUR working
data set, the conpiler term nates at the end of the data set and types:

- LEAVI NG PL360

12-1

You can type in a programdirectly by responding "COWILE X' to a -?
pronpt, where X represents any non-blank character. PL360 responds:

BEG N TYPI NG PL360 PROGRAM

-7

You can now type in a PL360 program and each line will be conpiled as
you go. Unfortunately, if you nmake a m stake, you nust start over since
the old lines are not saved. Also, |eading blanks are stripped from

each input line. For these reasons, it is usually best to conpile from
a WYLBUR wor ki ng data set. When typing the programin directly, you can
leave PL360 at any tine by typing "/*" or by sinply hitting the ATTN
button at the terninal

As you are |eaving PL360, ORVYL core nmenory is automatically cleared.
The WWLBUR working data set 1is not cleared. |If the programyou are
conmpi l i ng has nunerous errors and you wish to suppress the typing of
error nmessages at the terninal, then sinply hit the ATTN button at the
terminal (except in response to a pronpt). PL360 will then ask

DO YOU WANT FURTHER ERROR MESSAGES TYPED?

A "NO'" will cause the conpilation to continue wth no further error
nmessages typed at the termnal. A "YES" will cause conpilation to
continue as before. |In either case, the listing produced in the ORVYL
file (if any) will be unaffected.

After |eaving PL360, you can retrieve the object deck by typing:
GET <file name> CARD CLEAR

You can retrieve the listing by typing:
GET <file nane> PRI NT CLEAR

The listing has 133-byte records, the first byte of which is a carriage
control character. Thus, when the listing is printed offline, the
foll ow ng WLBUR conmand shoul d be used:

LI ST OFF BIN xxx UNN (0)

The (0) part of the LIST command causes the first byte to be treated as
a carriage control character. The resulting line printer listing |ooks
like a batch PL360 conpilation listing. The ORVYL version of PL360 has
sever al advant ages: Waiting for the batch queue is conpletely
elimnated. Errors are printed at the ternmnal, and thus can usually be
fixed i mredi ately and anot her conpilation can be made in a mnute or

t wo. Paper is saved since listings with errors are seldomlisted
offline. Finally, the ORVYL version of the runtine library can be wused
to run and test the programinmediately at the terninal. In this way,

ORVYL' s debuggi ng tools can be used and debuggi ng takes far less tine.
Most short conpilations can be done in about a second or two of ORVYL
compute tine (less than 50[). This is a significant savings over batch
conpi | ati ons. The PL360 conmpiler, which is about 3000 cards | ong,
conmpiles in 37 seconds of ORVYL conpute tinme at a cost of about $6.20.

12-2

12.2 Input/Qutput Subroutines for Interactive PL360 Prograns

The standard input-output subroutines using the sane |inkage conventions
as the READ and WRI TE subroutines described in Section 9.1 are avail abl e
for input-output operations directly at the termnal when running a
PL360 program under the ORVYL nonitor. A description of the paraneter
passi ng conventions of these subroutines foll ows:

READ The address of a 132 byte input area should be provided in RO
prior to calling READ Upon return, all registers are
preserved except R15 which contains the nunber of non-blank
characters typed by the user (counting inbedded bl anks). Al

details such as error nessages for illegal wuse of tabs or
waiting too long to respond are taken care of by the READ
subroutine. If the attention key is typed with no preceding
characters, the condition code is set to 2, otherwise it is set
to O.

WRI TE This subroutine works exactly like the subroutine described in
Section 9.1; i.e., the address of a 132 byte output area is
passed through register RO and all registers are preserved upon
return. The output area is typed at the term nal.

The followi ng discussion assunes that the ORVYL systemis being used at
Stanford where the ORVYL READ and WRI TE subroutines and the library
subroutines listed in Section 9 are stored in object module formin the
WYLBUR file TO000.PL360. RUNLIB on SYS10. To run a PL360 programin
ORVYL, just follow this sinple process. First, compile the program
This nmay be achieved either in batch or with the ORVYL version of the
PL360 conpiler. The programnmust be a statenent wth segnent nane
SEGNOO1 (cf. Section 4). Place the object nodul e output of the PL360
conpiler in the WLBUR worki ng data set and type:

COPY ALL TO END FROM &T000. PL360. RUNLI B ON SYS10
LOAD TEXT

Your programis now ready to be executed. You could either wunload the
program as an ORVYL UNLOAD file and/or type the command ENTER to begin
executi on.

Note that file I/Ois not provided for in the ORVYL runtinme routines.

12-3

APPENDI X A, EXAMPLE PROGRAMS AND LI STI NGS

See Section 10 for details and descriptions of conpiler control.

T

'8¢

L2
‘9¢

'Ge

FPvd

i (61usoy) i

i(urltem)
m (6 1usoy

i(urliem)

0000 1V (@S) AYINT IOVdS

ASvd 3010

“11303N0S YFDOFIN |
:0d 3Sva FOVdS Vivd TvEOB

ASvd 3010
WA YFO3IN |

‘04 3ISVE ANAN
B Ul1IeM) 0d 3SVE Ul W suo ljeJe oaq juaubas eleq |

WOANY € + VHATV - (7 WMAAYD NAS 3JZ IS 3L1vnO3
[189-1182 SWO | |e STLVNOT i

‘T - H THS T NAS XSWAH ‘9T + O1 93N NAS H

‘T - 071 THS T NAS MSWADT ‘6 NAS O ILvnd3

i(urlleno)sdo 141ys pue ues oog ‘O llauyllie ‘O lpeuau SWo | e SIIVNOT i

i(urliem)

i (B1usoy)
i (ujoo gN)

¥, /82 /0T AN

MAAYD V139 ¥FOIIN |
VHATV 31A9 NIT ARV

‘€ NAS N3T ILvnd3
Slaljliuap ! anea Jabailul Jo} suo llele [99p JIVNOT |
€%
0 O1 GTH paAeS 18S 01 U0 112NJISU Il DX Sapn |ou | Bu Ipodj
J191s 16a 1 aseq Jadoud Buiysi|geisa sopn |oul BuIpod | N B3I

(urliam) A11]1geded 8ous i Jaq -sSo0 D U0 ulInl T 434X$
(6 1uaoy) 2, U0 [1Ipuod jjo uinl e 13STI$
¢ 9bues |euo11lipuod jo pu3j ¢ N3

J, uo111puod sjies q 13s$
13S$ sew g, Jo e, JI pa|Iduod siuauwuod asayl j

(urliam) Sluauuod Jeq |ed l1lJaA
(uriiem) T abuel Jeuo !} ipuod jo pu3g T aN3$
13S$ sem e, uol11puod }I Bui|iduod snuiuop zZ ® 141$
(uriiem) 1s91 9| 1duod Jeuolllpuop T q 441$
(uriem) e, U0 I11puod si1es e 13S$
(ujoomn) J181s1b81 aseq welbolid 1 |nejap sao 1} 19ads z1=3Svd$
(uriiem) "SJ10JJ8 U0 UBAd SXI9p 198 [go a8 lelaud NDO$

T0

(6 1usoy) a111-gns e dpinoid 01 pled L ILS$

09€1d 01 suo Isua1x3 Bu 1i1eisuausqg we iboid o |dues

€200 7000 STO
17303NOS 0000
€200 0000 STO
1200 ¥S00 000
0200 ¥S00 000
6100 7000 ¥10
W3aN 0000
8T00 0000 vTO
LT00 ¥S00 000
9700 ¥S00 000
ST00 ¥S00 000
37 1S 20000000
100 ¥S00 000
€100 ¥S00 000
MSW H 42000000
H /0000000
MSWAOT 44700000
¢T100 ¥S00 000
O71 60000000
TT00 ¥S00 000
0TOO ¥S00 000
YAAVO 0S0d
vl3d Ov0d
6000 av00 000
YHdIV 8v0d
8000 8700 000
N37 €0000000
2000 8700 000
9000 8700 000
G000 8700 000
000 0000 000
€000 0000 000
¢000 0000 000
T000 0000 000

V100

V100
V100
V100
V100

V100
V100
V100
V100

V100
V100

V100

V100

V100

V100

V100

V100
V100

V100
0000
0000

0000
0000

T00

T00
T00
T00
T00

T00
T00
T00
T00

T00
T00

T00

T00

T00

T00

T00

T00
T00

T00
T00
T00

T00
T00

NO I1LVT IdNOD 09€71d

[

KA%

FPvd

i(u

i(u

i(u

i(u

i

i(u

i(u

i(u

YHAW = (ITNITV/TIVHAV . . = VHAV 1500
YHATV 30 (N3 -7)viag ANV (NI -7 MAAYD = (NIT NI T -7)MAAYD 9500
11189)) / 181)e uoissaldxs yilbua | A)10ads Aau ||99-01-||8]] GS00
500
Ca . 0 WNAYO ANV V139 =: v13d €500
1118M9)) uo Issa Jdxa uea |[00g SWMO | |e 1wauub Isse ||82-01-||3D i 2500
TS00
VL 0109 NIHL V139 =v VAAW 4| TO 0S00
ang (d)3ona3d - (0090# ‘9)30NA3Y NO ILONNA N ©3g 600
Od . . =29 ANV Td =< 24 37 KN 800
‘Bulils, =: og ‘9T =: €9 79 =: 19 /00
1118m) "SUO 11 1puod pue juauubisse |[[89-01-[3D | 900
TO S¥00
‘an= %00
e = (THNI+XI+gd)11303N0S 20 £v00
‘24 NAS X4 ‘Td NAS g4 d31S ©3d °¥3FIN | N B3d Zv00
11189) uo Issaidxa pue ‘xapu| ‘eseg A} 10ads Aau soadualid ol ||]] 700
000
1118m) '9INpad0.id NONNOD 01 ¥1vd 10} 9pod 9883 | AHINT 6£00
0D 8N) i SIINN ‘oY 3sva (STH) AYINT IHNAIoodd TwNd3LX3 8£00
#000 1V @1) AYIN3T AdINT
0000 1V @S) AYINT 31dAVS
00000000 4209009
‘an= 9£00
i€4d 01 UO 111pUOd ‘AYINT 01 Tvg 40) 8p0d 89d8S i (g4)AYINT 20 S£00
‘an= €00
1118 j iASYg Ul U0 11IpuOd uJINlalj 94-94 =:@ 9Y ££00
S((0T+pd)og HONVEE - (V139 WAAYD)yIAN Z2£00
c(0d.v# ‘ST HONVEE ‘(£02a# ‘vT)¥VANON NO ILONN4 TE00
1118m) ‘9poo po | 1duod 89S 'GT ® T SadA1 NOILONNd MaNi €0 0£00
j '@4npasoid |eo0| Jo salliadoud ayl ||e seyi N B3Id 6200
S(STH) AYINT FHNAIO0Ed NOAAOD 8200
1118m9) 'sjulod A1jus [euo Ilippe mo ||e 01 salinpadold NONNOD i 20 2200
N ©3g 9200
‘0d 3Asvd (STH) IIdAVS FHINAIO0Ed VOB G200
¥/ /82 /0T 1AADD 09€T1d 01 suo Isusix3 Bu lleuisuausq weibold o |dues

7500
7500
7500
7500
7500
7500
500
500

000
000
000
000
000
000
000
000

30Nd3d 0090

500
7500
7500
500
500
500
500

000
000
000
000
000
000
000

Xd <2000
g4 T000

500
500
500
7500
AdINS
7500

0200
7500
7500
500
500
500

000
000
000
000

000

000
000
000
000
000

HONvYd 0d.lv
VaNaN €0cd

500
500
500
AdINS
500
7500
7500
F1dAVS
500

000
000
000

000
000
000

000

0400
7900
7900
7900
84600
84600
84600
300

8100
VEOO
8200
8200
8200
8200
200

200
200
200
V100

V100

€200
9700
Y100
¢T100
8000

8000
8000
8000

0000
0000
0000

V100

T00
T00
T00
T00
T00
T00
T00
T00

T00
T00
T00
T00
T00
T00
T00

T00
T00
T00
T00

T00

910
910
910
910
910

910
910
910

910
910
910

T00

NO I1LVT IdNOD 09€71d

€

‘8

i (3gN3IN)VIVA AJOO$ SU1l Jo pus Byl S SIYL
i Q10=dS 1A ‘PTEZ=L INN ‘TOJNTL=HIS=T0A ‘V.1vd "TSAS=NSA ad v.ivd// i
i 'V1va JO YIAGATIN WO) 3p0d S| SIYL j

(6 1uaoy) 19s elep pauo 11 11ued woli) Adop (d3gNan viva AdOO$

iFAVNAd AdOO$ @yl Jo pus a8yl s syl
i (99T€=3Z ISX19 'NIN4034)=80a ‘d10=dS A // i
i ‘YTE€Z=L INN ‘TOINIL=43IS=TI0A ‘IAVYNAA ‘'TSAS=NSA dd IAWYNAA // i

i "19S Blep Jaulo} 11p3 ¥NgIMN B wo i 8pod Adod s syl
(uryiem) 189S elep |elluanbas woli) Adop

i '9p092 pa | 10D 88S | NI

PReR

PRRER

.

.

2REE

+

i '9p0o pa | 1du0d 89S | N B39 40 Td 3ISVO
i(Ur11em ®» W |02 9N) @ |ge 1 J0128A PJIOW) |y S3SN MOU luaud e 1S IASYD i

‘uSsau, =: (GONMIS)TA NIHL 0 = €4 41
ONMIS =:2d :(.'1s81® s sIyL. 'Td W1

i(uriien) bulils, 1se| jo yibus | sey yoiyn a31enba ON MIS i
X0ZT2020v# =: WNAVD X0960%# =: (T)vl3d

i (Bb1usaoy) Buiis 1| aoeds 01 pled |041U0D JOVASS i
‘an3

OVL 0109 NFHL IS4 = (T)VHATV 41 ‘3ndLl = WHd WV
VL 0109 N3FHL NOv 41

OVL 0109 NIFHL aax W ((Tg ‘0L ‘vd)x3 41
i (B1uaoy) <labau >, 10 <Jiabsiui> g 01 pamo | |8 <UO |1 IpUOI> j

‘0 NAS ISV ‘T NAS IndL ‘€ NAS AXHVO

‘8 NAS 440 ‘? NAS @IXIN ‘T NAS NO ‘T NAS MO1443A0 31vnd3 N ©3d
i (B1usoy) 'si1sa1l pue siuauubisse y1m asn 1o} SIIvOT paJe [28p-3.d i

W-d =1 2400 =v AQVIY ANV 9T > T -2d+Td =1 Td 37 HN
¥, /82 /0T AN

IAVYNAA AdOO$

T0

c0

T0

c0

€600
¢600
1600

0600
6800
8800
/800

9800
G800
800
€800
2800
1800
0800
6,00
8100
1,100
9,00
G/00
.00
€200
1200
0400
6900
8900
2900
9900
G900
7900

€900

2900
T900
0900
6500

09€1d 01 suo Isua1x3 Bu 1i1eisuausqg we iboid o |dues

7500
7500
7500

7500
7500
500
500

500
7500
7500
500
500
500
500
500
500
500
500
500
7500
7500
7500
7500
500
500
7500
7500
500
500

500

7500
7500
500
500

000
000
000

000
000
000
000

000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000

3Sv4 00000000
Indl 44444444
AHHYVO €0000000

440 80000000

000

daax N 0000000
NO T0000000
NMOT443NO TO000000

000
000
000
000

0400
0400
0400

0400
0400
0400
0400

0400
0400
V300
¥300
3d00
2daoo
2daoo
2daoo
2daoo
9000
3400
3400
3400
¢d00
¢d00
¢d00
¢d00
9v00
[A40]0]
V600
V600
V600

V600

V600
V600
V600
V.00

T00
T00
T00

T00
T00
T00
T00

T00
T00
T00
T00
T00
T00
T00
T00
T00
T00
T00
T00
T00
T00
T00
T00
T00
T00
T00
T00
T00
T00

T00

T00
T00
T00
T00

NO I1LVT IdNOD 09€71d

14

‘0TT
FPvd

00000000
T80¥2v68
¥00d0d8s
O4.vEQVT
OTTVPETTO
ov.LvvZTo
0E€TO0T6S
€09dosod
Ir000SLY

00000000
0¥2v6888
33008300
0000T4dLY
0s0dcocd
ovvvv .00
¢Tv18v0d
ovoacora
T26T90TO

¥, /82 /0T AN

0000000
€3021¢0¢
¢3000d00
¢400T118V
0TTOAdvY0d
0d4.¥VvETO
6¥0dT1T02d
04000921V
000550c2d

0T000000
00960%0
040004Lv
TIVT9ZCTO
¢02do400
024dSv600
81¥0d0VY 6
ov0dosod
0€TO000E

EO\E\-ELE-IEL/\l<EINE]

0T.¥000T
ovovovov
eraro400
vY00T€0c2d
08.¥6%¥0d
06.¥3vod
8¥0dT1S0d
€08avend
€02do00¢

avad

JONTFHIATH TWNIILX3 AHINT
JONTHISTY IWNGTILXT 000ND3S
0000 1V (@S) AYINT TOONO3S
00000000 00000000
00T62V2ZY G8Y6AVEVY 2VS8EVOY
/8666866 £VZvad4/.0 20000386
D4/VEVOT 240004l £59TOH00
24000L.L% €£2T4000 O0ZIV.TIO
00S68Y00 44260400 030400
008S43S0 +¥TO048S V60009.t
2090advoa 1S0dzZovd 20120+ 0d
04,0290 3Y0O0L.LY 00020¥S6
000TE0ZA +00TZE0S 8TT4008S
0000 1V (@S) AYINT 00ONO3S
aNT ©DV1L ¥600

09€1d 01 suo Isua1x3 Bu 1i1eisuausqg we iboid o |dues

ovTo
0ZTO0
00TO
0300
0000
00 40]0]
0800
0900
0v00
0200

¥S00 000

0400 TOO

NO I1LVT IdNOD 09€71d

S

FPvd

¥, /82 /0T AN

¥800 +800

800
9100

0800

€800

€800
6500

9100

8€00
€800

2800
6500

6500

8900

€€00
2800

1800
6500

6500

/900 9S00 9900 9S00 9900

€/00 9S00 9900 €S00 0900

6€00

€00 9S00 €500 €900

09€1d 01 suo Isua1x3 Bu 1i1eisuausqg we iboid o |dues

2900

€€00
2800

1,100
6100

8€00
6500

¢T100
€00

¢€00

8€00

1,100

0500

8900

9900
1,100

€00

€€00
1800
9900
€00
8100
8200
8100
1200
€00
6100

€00
12900
¢€00
9900

TT00
8000

¢T100
Y100
8900

GE00

8100
9900
¢€00
¢€00

€900
9900
0500
9,00
1200
€200
Y100
G200
G200
1800
¢€00
GE00
¢v00
G200
¢v00
L7100
¢v00
6100
6500
¢v00
2900
2900
2900
T€00
2900
8T00
TT00
TT00
2000
9,00
¢T100
¢T100
6000
€900
9900
8200
€900
¢€00
Lv00
Lv00
Lv00
Lv00
T€00
6000

aNdL
NL
OVl

ON 1S
30VdS
1T1303INOS
37 1S
F1dAVS
94

ad

iZ=|

€d

[2<]

STd

Td

0d

Xd
30Nd3d
avad
a4
NMOT4H43N0

cd

Td
HONVH4
v13d

FONFH343d SSOHO 09¢€71d

0000 1V (@S) AYINT 00O0NO3S

ovo¥ OvOovrovov 0doo

‘19
‘09

69
‘89

0v0v0r 0¥ 2000 OL 0600
0vOvY0r0r O0O¥O0vO¥Or OvOvOvYOr O0OvOrOvOr OVOYOYOv OvO¥OvOY OvOYOrOr O0¥0¥909a 0,00
([\ERMEE 6£00 9000 000 #D00 TOO
dO01 0109 AL M\ 1NdIN@® =: od 8£00 9000 000 2900 TOO
AOOLTWA L =: €4 HINSNWD =: Td 1£00 9do0 000 0V00 TOO
‘== T04d NI 3NTVA 40 1009 3FHvNOS IVL - - INIFAANOD 140S 9£00 9000 000 D600 TOO
294 + TOd « T04d =: TOd " IWAOLlaDd G£00 9000 000 3800 TOO
‘TOd « TO4 =: /94 IWAOLADd ‘€ =:2d ‘QIvID =: T €00 9do0 000 8100 TOO
11X3 0109 NTHL =v 41 Qvad ‘@dvadd =: 0d doO1 ££00 9000 000 9900 TOO
‘-- 3000 N WA -- ININANOD Z2£00 9000 000 9900 TOO
T£00 9000 000 9900 TOO
dIWSNY 3s0d
aQdvo €204
(YT)INd1INO NAS UIMSNY * (S€)1INdLNO NAS QdvD 3I1Ad 0€00 9000 000 9900 TOO
-((. .)ooT ‘.40 s3IA IS WO = ISANILOdAH . 6200 9000 000 9900 TOO
1Nd1n0 0soa
) = 1Nd1NO F1AG VET AVHAY 8200 0S00 000 9900 TOO
1200 0G00 000 9900 TOO
JoNa3d 0090
T-- HALS B3I WOHd T 1OVH1INS -- INTAANOD - (0090# ‘9) IOoNAIH NO ILONN4A 9200 0500 000 9900 TOO
S MVONY AQYEHTY 31V 3L MW % avad - - INIANAOD G200 0S00 000 9900 TOO
T0 %200 0S00 000 9900 TOO
‘an3 20 €200 0S00 000 #900 TOO
‘GP4 =: TOod ‘aN3 2200 0S00 000 3500 TOO
194 sav =: 294 iggd - Sv4 =: 194 1200 0G00 000 8500 TOO
2 /€24 + €24 /104 =: Svd €0 0200 0S00 000 3IY00 TOO
‘'S4 = €24 N ©3d 61700 0S00 000 2¥00 TOO
od 19 .0T < 294 37 HW\ 8100 0S00 000 ¥¥00 TOO
MT =: 94 NOOd =: Sbd 1 (NOD4 ‘Td)O1S .T00 0500 000 8£00 TOO
SOv# + T VHHS SOv# - Td =: Td - (NOOd ‘Td)0 | 9T00 0500 000 8200 TOO
Td-Td = Td ‘104 =: NOO4 20 STO00 0S00 000 2200 TOO
NOO4d 8¥0a
NOO4 W34 ONO1 N B3g ¥T00 8700 000 2200 TOO
‘T0d N1 INTWVA THL 40 1004 IUVNOS THL STIMVL IINAIO0Ed S HL ININAOD €100 > 8700 000 2200 TOO
1408
NIHL 10 < T0d 41 :(¥yTd) LOS IHNA3oodd 2100 800 000 8T00 TOO
1100 8700 000 8TOO TOO
IVAOL1a0dg
TINN (PTH) TWAOLADE 3dNaIoodd TeNea X3 0T00 8700 000 8TOO TOO
aOg0L VA
TINN (PTH) @O9OLTIVA 3dNaIo0dd TNea X3 6000 8700 000 8TOO TOO
8000 8700 000 8TOO TOO
f-- "1Sd 14 S3T1GV VA ANV « L000 8700 000 8TOO TOO
‘SNO I1ONNA ‘STINAIO0Ed IWNYFLXT FdvT103a -- ININAOD 9000 8700 000 8TOO TOO
5000 8700 000 8TOO TOO
f-- "17NS3Y THL SIL MW ANV ISANTLOdAH IHL SILINAOD ¥000 8700 000 8TOO TOO
TONV ML IO M V 40 S3A IS IHL Savad AVED0dd THL « €000 8700 000 8TOO TOO
'09€7d 40 S3UNLYAd TFHL 40 1SON 40 3ISN STIIWA « TO 2000 8700 000 8TOO TOO

¥. /60 /v0 TANSO

NIT0Hd TNV 1L 1HO [

NO I1LVT IdNOD 09€71d

¢ Pvd

00000000
00000000
817030489
oT10403dSY
€00002Tv
04.¥990¢
810d0¥89

0000021V
00000000
43608304
90v<2000¢
€.0d0TTvy
29d¢2198¢
81¥0d0TZY

¥. /60 /v0 TANSO

v8.vATLY
00000000
0485050d
0030489
¥00409.Y
8404079
30040TvY

VD LVOE
00000TTV
00T¥9c0d
43500404
790340489
crveeyac
TO000TVv8

JONFH343d
JONFH343d
JONFH343d
JONFH343d
JONFH343

TVNG31LX3
TVNG31LX3
TVNG31LX3
TVNG31LX3
TWNA31LX3

ENR.
AOdoL VA
wANO1d0d

avad
000NDO3S

0000 1V (@S) AYINT

0296946¢.
0003420
048543S0
048G090¢
43600d04
0v8¢2v¢8ce
30040T4av

00000000
000d0386
¥3040489
0982304
0485€.0d
29040d.y
8¥0d0TEY

00000000
¥00d0d8s
L0000ETY
048543S0
00T¥34.0
04040969
11d18%v0d

TOONO3S

00000000
990404.v
350d0TTY
03040489
708204
0d04098.
00091904

NIT0Hd TNV 1L 1HO [

0300
0000
00 40]0]
0800
0900
0v00
0200
NO I1LVT IdNOD 09€71d

0000 1V (@S) AYINT 13141
00T00000 00444444 000¥000S 00ad34.0 0900
22210000 9£86GTAT 000T9TTY TOOSETTY ¥S040L.t 29040Evy OT040V.iyP D9040£6S 0t00
89040£VS O00TSOSTY 00T909Tv 2£040d4/.¥ VS0d40d.t STATO00T 9TTvvE0d 061000t 0200

‘aN3 1200 0000 000 0900 ¥TO

(2 ‘ed LT c((2T)eTg ‘9d ‘e N L IX3 TO 9200 0000 000 VSO0 ¥T0

‘an3 G200 0000 000 VSO0 ¥TO

QY - ()1 = 200 0000 000 +S00 V10

(T+ed)S® =: Td NaHL = 41 20 €200 0000 000 2%¥00 ¥TO

((v9 ‘sg ‘0)1dL ‘ed)x3 ‘an3 €0 2200 0000 000 DE£00 VIO

‘an3 ¥0 1200 0000 000 DE00 ¥TO

1(9Gz)5 =: cd :(9G2)9® =: 94 N B34 €0 0200 0000 000 0£00 VIO

3S713 aN3 ¥0 6T00 0000 000 0£00 ¥TO

13 0100 ‘sd-(9d)T® =: Td N B3ad €0 8100 0000 000 9200 ¥TO

NaHL =v 41 ‘(¥4 ‘GsQ 'SS2)1dL N ©3g .T00 0000 000 8T00 VIO

Od 95z TIINN 992 d3ILS €4 =@ &d ¥0d 20 9T00 0000 000 8TOO ¥TO

'2d = 9d - (gd)30N@=d N B3g ST00 0000 000 ¥TOO ¥TO

NIHL 0 < €4 41 ¥T00 0000 000 3000 ¥TO

M = Td ‘d-d =i 2d T = &d e = v £T00 0000 000 +000 V10O

'SHALS B3Y IAVS INFNAOD - ((ZT)eTg ‘9d ‘ed IS 2100 0000 000 0000 ¥TO
IoNa3d 0090

1 (0090# '9)3ONATL NO ILONN4H TT00 0000 000 0000 ¥TO

‘24 NO a3svg 13S 3a00 NO 1L I[ANOD OSTv * 0700 0000 000 0000 ¥TO

NO 1LV ISNVHL d3ddOLS * 6000 0000 000 0000 ¥TO

HO HW H310VEVHO 31gvL J1IVISNVIL = 2o * 8000 0000 000 0000 ¥TO

ON MLS AILVISNVEL 40 HIONTT = Td HLM SLIX3 « L000 0000 000 0000 ¥TO

'‘A31S3L 39 OL ON LS 40 HION3T1 = € * 9000 0000 000 0000 ¥TO

JgvL 0@ = 2o * 5000 0000 000 0000 ¥TO

‘Q31S31 39 OL ON MLS 40® = Td HL M H3INT « #000 0000 000 0000 VIO

'37gvL JIVISNVEL V 1SN VOV « €000 0000 000 0000 ¥TO

ON M1S INdN | NV S1SAL 3N I1n0d S HL INGAWNOD TO 2000 0000 000 0000 ¥TO

1S3141
¥/ /60 /70 ANLO 1S3141 NO 1LV IdNOD 09€1d

N W0

T FPvd

‘an3

- (esz ons

NG ON LS =: STd (.22 HIAM 13S. ‘Td V1
NG ON LS =: §Td C(LINILION 13S. ‘Td W
NG ON LS =: STH (LBTSAS TOA 13S. ‘Td WV
NG ON LS =: STd (AN 13S. ‘T W1

NG ON LS =: ST - (LISY3aL 13S. ‘Td W

ANdL ‘'z =: sTd - (XOT4dS# ‘Td W1

aNa C(PSZDOAS 0d-0d = 0d Td 9AN =: Td N B3ad
S(6d) Wng1an FHINAIO0Ed AN

‘(zvzons T =:0d (9¥Z)OAS ‘T =: 0d N B3ag

t(6d) 1ndl =NA3oodd N B3g
TH-0Td =: 0Td 2 =: 174 -(0d ‘OoTd)dIvE N B3g

v, /22 /Y0 AN

T0

c0
c0

€0
c0

T0

ST00
100
€100
¢T100
TT00
0TO0O
6000
8000
,000
9000

G000
000

€000
¢000

SNO |11d0 13S OL WVHED0Hd TAAAO

0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
dNg1m
0000
0000
1Ndl
0000
0000
NO 11dO

000
000
000
000
000
000
000
000
000
000

000
000

000
000

0900
0900
V900
3500
2500
9100
VEOO
3200
€200
V100

8100
0000

8000
0000

¥10
¥10
¥10
¥10
¥10
¥10
¥10
¥10
¥10
¥10

¥10
¥10

¥10
¥10

NO I1LVT IdNOD 09€71d

APPENDI X B. THE OBJECT CODE

Three principal postul ates were used as guidelines in the design of the
| anguage:

1. Statenments which express operations on data nust correspond
to nmachine instructions in an obvious way. Their structure
nmust be such that they deconpose into structural elenents,
each corresponding directly to a single instruction.

2. No storage el enent of the conputer should be hidden from
t he progranmer. In particular, the wusage of registers
shoul d be explicitly expressed by each program
3. The control of sequencing should be expressible inplicitly
by structure of certain statenents (e.g., through
prefixing themw th clauses indicating their conditional or
iterative execution).
The foll ow ng paragraphs show the machine code into which the various
constructs the |anguage are translated. The menonics of the 360
Assenbly | anguage [7] are used to denote i ndi vidual instructions.
It is assunmed that R15 is the program base register (cf. 4.2, 10.1).
Oper ands Operators
K register A primary 1 2 3 4 5 6
(type) (type) L= + - * / ++
i nt eger i nt eger register LR AR SR MR DR ALR S
i nt eger i nt eger cell L A S M D AL S
i nt eger short integer cell LH AH SH VH
real real register LER AER SER MER DER AUR S
real real cell LE AE SE VE DE AU S
| ong real real register LER AER SER MER DER AUR S
| ong real I ong real register LDR ADR SDR MDR DDR AWR S
| ong real real cell LE AE SE VE DE AU S
| ong real long real cell LD AD SD VD DD AW S
Table B.1 - (Object Code Operators
1. <K-register> := <A-primry>

The code consists of a single |oad instruction depending on the types of
regi ster and primary (cf.

Table B. 1,

B-1

colum 1).

2. <K-regi ster assi gnnent ><oper at or ><A-pri mary>

The code consists of a single instruction depending on the operator and
the types of register and primary. It is determ ned according to Table
B.1, columms 2-7.

3. <A-cell> := <K-register>

The code consists of a single store instruction depending on the types
of cell and register as indicated by Table B.1, columm 8.

4, | F <condition-1> AND ... AND <condition-n-1> AND
<condi tion-n> THEN <si npl e statenment> ELSE <st at enent >

(condition-1)
BC c1,L1

(condition-n-1)
BC cn-1, L1
(condi tion-n)
BC cn, L1
(sinple statenent)
B L2
L1 (statenent)
L2

ci is determined by the i-th condition, which itself either translates
into a conpare instruction depending on the types of conpared quantities
(cf. Table B.1, colum 9), or has no corresponding instruction, if it
nerely designates a relation or integer val ue.

Exanpl e: IFRL <R THEN RO := R3 ELSE RO := R4
CR 1,2
BC 10, L1
LR O, 3
B L2
L1 LR O, 4
L2
5. | F <condition-1> OR ... OR <condition-n-1> OR

<condi tion-n> THEN <si npl e statenment> ELSE <stat enent >

(condition-1)
BC c1,L1

(condition-n-1)
BC cn-1, L1
(condi tion-n)
BC cn, L2

L1 (sinple statenent)
B L3

L2 (statenent)

L3

6. CASE <i nteger register-ne OF
BEA N <st at enent - 1>
<st at enent - 2>

<st at enent - n>;
END

AR mm
LH mSWm
B 0(mp)
L1 EQU *-OCRIGN
(statenent-1)
B LX(P, 0)
L2 EQU *-OCRIGN
(st at enent - 2)
B LX(P, 0)

Ln EQU *-ORIG N
(st at enent -n)

B LX(P 0)

SW EQU *-2
DC Y(L1)
DC Y(L2)
DC Y(Ln)

LX EQU *-ORIG N

ORIA N is the address of the beginning of the program segnent and
register Rp is assunmed to contain this address (cf. 5.1, 8.1).

7. VWHI LE <conditi on> DO <st at ement >

L1 (condition)
BC cond, L2
(st at enent)
B L1

L2

If the condition is compound, then code sequences sinmilar to those given
under 4 and 5 are used.
8. FOR <i nteger register assignnment>

STEP <increnment> UNTIL <limt> DO <statement >

(i nteger register assignnment)

B L2
L1 (statenent)
A m | NC

L2 C m LI M
BC cond, L1

B-3

Rmis the register specified by the assignnent, INC the |ocation where
the increnent is stored, and LIMthe |ocation where the |imt is stored.
The conpare instruction at L2 may be either a C, CH, or CR instruction
dependi ng on the type of linit. Mreover, cond depends on the sign of
t he increnent.

9. PROCEDURE <i dentifier>(<integer register>);<statenent>
P (st at enent)
BR m

It is assunmed that the integer register enclosed in parentheses is Rm
and P is a |label corresponding to the procedure identifier.

10. <procedure identifier>
BAL mP
or L b, newbase
BALR m b
L b, ol dbase
or L b, newbase
BAL mP

L b, ol dbase

It is here assuned that P designates the relative address of the
procedure to be called within the program segnent in which it is
declared, and m is the return address register specified in its
declaration, and b is the program segnent's base register. The first
version of code is obtained whenever the segnment in which the procedure
is declared is also the one in which it is invoked. |If the procedure
call is of the form

<procedure identifier>(Rn)

then the instruction sequences becone:

BAL mP

LTR n,b

BALR b, O

L b, ol dbase
or L b, newbase

BALR m b

LTR n,b

BALR b, O

L b, ol dbase
or L b, newbase

BAL mP

LTR n,b

BALR b, O

L b, ol dbase

Regi sters

Reg
Freg
Lreg

Subscript -d i
assi gn synbol

APPENDI X C.

RO thru R15
FO, F2, F4, F6
FO1, F23, F45, F67

ndi cat es t hat
(:=), thus

regi st

Reg-d : = Expression
Cells
Bcel | BYTE
Scel | SHORT | NTEGER
I cell | NTEGER
Fcel | REAL
Lcel | LONG REAL
Note: Values may replace cells in
Reg-d : = Icell coul d be:
Reg-d : = #FACE
Reg-d : = "DROP"
Reg-d := _4
Condi ti ons
Cond represents, =, ~=, >= , <=

COWPI LER CONSTRUCTS

| NTEGER
REAL
LONG REAL

er assigned on the left side

Val ue
Val ue
Val ue
Val ue
Val ue

—a unX

an expression.

(lcell)
0000FACE
C4AD9D6D7
FFFFFFFC

Nunmber , ~Nunber

of

t he

In the followi ng tables, * preceding the CODE indicates the instruction
does not change the condition code.

Code Mhenoni ¢ Conpi | er Construct

05 BALR Pr ochane (not local procedure call)

07 BCR END of any PROCEDURE

10 LPR Reg-d : = ABS Reg

11 LNR Reg-d : = NEG ABS Reg

12 LTR Reg Cond O

13 LCR Reg-d : = NEG Reg

14 NR Reg-d AND Reg

16 R Reg-d OR Reg

17 XR Reg-d XOR Reg

*18 LR Reg-d : = Reg or Reg-d ... = Reg
Note: Reg-d := Reg-d generates no code.

19 CR Reg-1 Cond Reg-2

1A AR Reg-d + Reg

1B SR Reg-d - Reg

*1C MR Reg-d * Reg
Not e: Reg-d nust be odd nunbered

*1D DR Reg-d / Reg
Not e: Reg-d nust be odd nunbered

1E ALR Reg-d ++ Reg

1F SLR Reg-d -- Reg

20 LPDR Lreg-d : = ABS Lreg

21 LNDR Lreg-d : = NEG ABS Lreg

22 LTDR Lreg Cond OL

23 LCDR Lreg-d : = NEG Lreg

*28 LDR Lreg-d : = Lreg or Lreg-d ... = Lreg
Note: Lreg-d := Lreg-d generates no code.

29 CDR Lreg-1 Cond Lreg-2

2A ADR Lreg-d + Lreg

2B SDR Lreg-d - Lreg

*2C VDR Lreg-d * Lreg

*2D DDR Lreg-d / Lreg

2E AVR Lreg-d ++ Lreg

2F SWR Lreg-d -- Lreg

30 LPER Freg-d := ABS Freg

31 LNER Freg-d : = NEG ABS Freg

32 LTER Freg Cond OR

33 LCER Freg-d : = NEG Freg

*38 LER Freg-d : = Freg or Freg-d ... = Freg
Note: Freg-d := Freg-d generates no code.

39 CER Freg-1 Cond Freg-2

3A AER Freg-d + Freg

3B SER Freg-d - Freg

*3C MVER Freg-d * Freg

*3D DER Freg-d / Freg

3E AUR Freg-d ++ Freg

3F SUR Freg-d -- Freg

Table C.1 - 2-Byte Instructions

G2

All these instructions allow i ndexable cells.

Code Mhenoni ¢ Conpi | er Construct
*40 STH Scell := Reg or Reg-d ... =: Scell
*41 LA Reg-d : = @Cel |
45 BAL Pr ochane (l ocal procedure call)
*47 BC GOTO Tag

--- THEN

--- ELSE
*48 LH Reg-d : = Scell
49 CH Reg Cond Scel |
4A AH Reg-d + Scel l
4B SH Reg-d - Scell
*4C VH Reg-d * Scell
*50 ST lcell := Reg or Reg-d ... = lcell
54 N Reg-d AND I cel |
56 O Reg-d OR Icell
57 X Reg-d XOR I cell
*58 L Reg-d : = Icell or Reg-d : = @rocnane
59 C Reg-d Cond Icell
5A A Reg-d + Icell
5B S Reg-d - Icell
*5C M Reg-d * Icell

Note: Reg-d nust be odd nunbered
*5D D Reg-d / Icell
Note: Reg-d nust be odd nunbered

5E AL Reg-d ++ Icell
5F SL Reg-d -- Icell
*60 STD Lcell := Lreg or Lreg-d ... = Lcell
*68 LD Lreg-d : = Lcell
69 CD Lreg-d Cond Lcell
6A AD Lreg-d + Lcell
6B SD Lreg-d - Lcell
*6C VD Lreg-d * Lcell
*6D DD Lreg-d / Lcell
6E AW Lreg-d ++ Lcell
6F SW Lreg-d -- Lcell
*70 STE Fcell := Freg or Freg-d ... = Fcell
*78 LE Freg-d : = Fcell
79 CE Freg-d Cond Fcell
7A AE Freg-d + Fcell
7B SE Freg-d - Fcell
*7C VE Freg-d * Fcell
*7D DE Freg-d / Fcell
7E AU Freg-d ++ Fcell
7F SuU Freg-d -- Fcell
*88 SRL Reg-d SHRL Ivalue or Reg
*89 SLL Reg-d SHLL Ivalue or Reg
8A SRA Reg-d SHRA Ivalue or Reg
8B SLA Reg-d SHLA Ivalue or Reg

Table C. 2 - 4-Byte Instructions

C3

APPENDI X D.

Syntactic Entity

<A- nunber >

<al ternative condition>
<arithmetic operator>
<bl ock>

<bl ock body>

<bl ock head>

<case cause>

<case sequence>

<CASE st at enent >
<char act er >

<char acter sequence>
<conbi ned condi tion>
<conpound condi tion>
<condi ti on>
<decl arati on>
<digit>

<fill value>
<fl oat i ng- poi nt
<for cl ause>
<FOR st at enent >
<format code>
<fractional nunber>
<function decl arati on>
<function definition>
<function desi gnat or >
<function identifier>
<@OTO st at enent >
<hexadeci mal digit>
<hexadeci mal val ue>
<identifier>

<if clause>

<| F statenent>

<i ncrenent >

<i ndex>

<instruction code>

<i nteger register expression>
<i nteger val ue expression>
<integer value identifier>
<i nteger val ue synonyne
<itenp

<K-pri mary>

<K-regi ster>

<K-regi ster assi gnnent >
<K-regi ster synonynp

number >

GONOGOONIIUINUIOOIONWOWOINNNNWONOIOWINREIOOWWROOREROOW
PNVNNRPWONRARRROOONRRERANNRPRNROONWNRUUCIUAROOORRRENUIN

SYNTACTI C | NDEX

Section

>
H

Syntactic Entity

<| abel definition>

<letter>

<limt>

<l ogi cal operator>

<nmonadi ¢ oper at or >

<par anet er >

<paraneter list>

<procedure decl arati on>
<procedur e headi ng>
<procedure identifier>
<procedure statenent>

<pr ogr an®

<rel ati on>

<repetition list>

<scal e factor>

<segnent base decl aration>
<segnment base headi ng>
<segnent cl ose decl arati on>
<separate procedure headi ng>
<shi ft operator>

<si npl e K-regi ster assignnent>
<si npl e procedure headi ng>
<si npl e statenent>

<sinmple T-type>

<stat condition>

<st at ement >

<string>

<syn cel |l val ue>
<synonynous cel | >
<synonynous i nteger val ue>

<T-cel | assignnent>
<T-cel |l declaration>
<T-cel | designator>
<T-cell identifier>
<T-cell synonyne
<T-cel |l val ue>
<T-primry>

<T-type>

<T-val ue>

<true part>

<unsi gned A- nunber >
<whi |l e cl ause>

<WHI LE st at enent >

COWOWIRROIUINNUONNINWRADPHNROODONNNWITSRRONOONNSOON A
NNNOWWRWINRROWWOUORRPUWRRPREPNRPNNNNWAORNNRRPNONRENON R

Section

APPENDI X E. SYNTACTI C ENTI Tl ES

<A- nunber > ::= <unsi gned A-nunber> !
_ <unsi gned A-nunber >
<alternative condition> ::= <stat condition> !
<alternative condition> OR <stat condition>
<arithnetic operator> ::=+ 1 - 1 * 1 [1 ++ 1 --
<bl ock body> ::= <bl ock head> !

<bl ock body> <statenent> ; !
<bl ock body> <I abel definition>
<bl ock head> ::= BEG N ! <bl ock head> <decl aration> ;
<bl ock> ::= <bl ock body> END
<byte val ue> ::= <integer nunber> X
<case clause> ::= CASE <integer register> OF
<case sequence> ::= <case clause> BEG N !
<case sequence> <stat enent >
<CASE statenent> ::= <case sequence> END
<character> ::= <any EBCDI C character except "> ! ""
<character sequence> ::= <character> !
<char acter sequence> <character>
<conbi ned condition> ::= <stat condition> !
<conbi ned conditi on> AND <stat condition>
<conpound condition> ::= <conbi ned condition>
<alternative condition>
<condition> ::= <T-cell designator> <relation> <T-cell val ue>
<byte cell designator> !
N <byte cell designator> !
<K-register> <rel ati on> <A-primary>
<i nteger register> <relation> <string> !
<rel ati on> !
<i nteger val ue> !
A <integer val ue>
<decl aration> ::= <T-cell declaration> !
<procedure decl arati on> !
<function decl aration> !
<T-cell synonyne !
<K-regi ster synonym !
<i nteger val ue synonyns !
<segnent base declaration> !
<segnent cl ose decl aration>

<digit>::=01!1 212131 4151 6! 71 819
<fill value> ::= <T-val ue> !
<string>!

@cprocedure identifier>!
@cxprocedure identifier> |
@T-cell designator> !
@oxT-cell identifier> !
<repetition list> <fill value>)
<fl oati ng-poi nt nunber> ::= <fractional nunber> !
<fractional nunber> ' <scale factor> !
<unsi gned i nteger nunber> ' <scale factor>

<for clause> ::= FOR <integer register assignment> STEP <i ncrenent >
UNTIL <limt> DO
<FOR statenment> ::= <for clause> <statenent>

E-1

<format code> ::= <integer val ue>

<fractional nunber> ::= <unsigned integer nunber> . !
<fractional nunber> <digit>
<function declaration> ::= FUNCTI ON <function definition>!

<function declaration> , <function definition>
<function definition> ::=
<identifier> (<format code> , <instruction code>)
<function designator> ::= <function identifier>!
<function identifier> (<paraneter list>)
<function identifier> ::= <identifier>
<GOTO statenent> ::= GOTO <identifier>
<hexadecimal digit> ::= <digit>! A! B! C! D! E! F
<hexadeci mal val ue> ::= # <hexadecimal digit>!
<hexadeci mal val ue> <hexadeci mal digit>
<identifier> ::= <letter>! <identifier> <letter>! <identifier> <digit>
<if clause> ::= | F <conmpound condition> THEN
<IF statement> ::= <if clause> <statenent> !
<if clause> <true part> <statenent>
<increment > ::= <integer val ue>
<i ndex> ::= <integer val ue expression> !
<i nteger register expression> !
<i nteger register expression> + <integer val ue expression> !
<i nteger register expression> - <integer val ue expression>
<instruction code> ::= <integer val ue>
<i nteger register expression> ::= <integer register> !
<integer register> + <integer register>
nt eger val ue expression> ::= <integer val ue> !
<i nt eger val ue expression> + <integer value> !
<i nteger val ue expression> - <integer val ue>
<integer value identifier> ::= <identifier>
<i nteger value synonyns ::=
EQUATE <identifier> <synonynous integer val ue> !
EQUATE <identifier> SYN <string> !
EQUATE <identifier> SYN <regi ster nane> !
<i nteger value synonym> , <identifier> <synonynous integer val ue>

<

<i nteger value> ::= <integer nunber> !
<hexadeci mal val ue>
<i nteger value identifier>
<itemr ::= <identifier>! <identifier> = <fill val ue>
<K-primary> ::= <K-register>
<K-register assignnent> ::= <sinple K-regi ster assignhnment> !
<K-regi ster assignnent> <arithmetic operator> <A-primry> !
<K-regi ster assignment> = <K-register> !
<K-regi ster assignment> =: <A-cell designator> !

<i nteger register assignment> <logical operator> <integer prinary> |

<i nteger register assignment> <shift operator> <integer val ue> !

<i nteger register assignment> <shift operator> <integer register>
<K-regi ster synonymp ::=

<sinmpl e K-type> REG STER <identifier> SYN <K-regi ster> !

<K-regi ster synonym> , <identifier> SYN <K-register>

<K-register> ::= <identifier>

<l abel definition> ::= <identifier> :

<letter> ::= AIBICDIEEFIGH ITJIKILIMNOP QR SITIU VIWX! Y! Z
<limt>::= <integer primary> ! <short integer prinmary>

E-2

<l ogical operator> ::= AND! OR ! XOR

<long real value> ::= <long real number> !
<hexadeci mal val ue> L
<nonadi ¢ operator> ::= ABS ! NEG! NEG ABS
<paraneter list> ::= <paraneter> ! <paraneter |ist> , <paraneter>
<paraneter> ::= <T-val ue> !

<T-cel | designator>
<K-register> !

<string> !

<function desi gnat or >
<procedure decl aration> ::= <procedure headi ng> ; <statenent>
<procedure headi ng> ::= <sinple procedure headi ng> !

COMMON <si npl e procedure headi ng>
<separate procedure headi ng> !
<separate procedure headi ng> BASE <i nteger register>

<procedure identifier> ::= <identifier>

<procedure statenent> ::= <procedure identifier>
<procedure identifier> (<integer register>)

<program> ::= <block> . !

GLOBAL <sinpl e procedure headi ng> ; <statenent> . !

GLOBAL <sinpl e procedure headi ng> BASE <i nteger register> ; <statenent>
<real value> ::= <real nunber> !

<hexadeci mal val ue> R

<relation> ::= =1 A= < | <=1 >=1 >
<repetition list> ::= (!

<i nteger value> (!

<repetition list> <fill val ue>
<scal e factor> ::= <integer nunber>

<segnent base declaration> ::=
<segnent base headi ng> BASE <i nteger register>
<segnment base headi ng> ::= SEGVENT !
GLOBAL DATA <identifier>!
EXTERNAL DATA <identifier> !
COVMON DATA <identifier>!
COVVON !
DUMWY
<segnent close declaration> ::= CLOSE BASE
<separate procedure heading> ::=
SEGMVENT <si npl e procedure headi ng> !
GLOBAL <sinpl e procedure headi ng> !
EXTERNAL <si npl e procedure headi ng>

<shift operator> ::= SHLL ! SHLA ! SHRL ! SHRA

<short integer value> ::= <short integer nunber> !
<hexadeci mal val ue> S

<sinple byte type> ::= BYTE ! CHARACTER

<sinple integer type> ::= INTEGER ! LOG CAL

<sinmple K-register assignnent> ::=
<K-register> := <A-primry>
<K-regi ster> : = <nonadi ¢ operator> <A-primary> !

<integer register> :

<integer register> :

<integer register> :
<sinmple long real type> :

<string>!

@ <T-cel | designator> !
@ <procedure identifier>
LONG REAL

E-3

<si npl e procedure heading> ::=
PROCEDURE <i dentifier> (<integer register>)

<sinple real type> ::= REAL
<sinmpl e short integer type> ::= SHORT | NTEGER
<sinple statenment> ::= <bl ock> !

<K-regi ster assignment> !
<T-cel |l assignnent> !
<functi on desi gnator>
<procedure statenent>
<@GOTO statenment > !

<CASE statenent> !

NULL
<stat condition> ::= <condition> !
<statenment> ; <condition>
<statenent> ::= <sinple statenent> !

<| F statenent> !
<WHI LE st at enent> !
<FCOR st at ement >

<string> ::= " <character sequence> " !

<hexadeci mal val ue> X
<syn cell value> ::= <T-cell designator> - <T-cell designator>
<synonynous cell> ::= SYN <T-cell designator>! SYN <integer val ue>
<synonynous i nteger value> ::= SYN <integer value> !

SYN <npnadi ¢ operator> <integer val ue> !

SYN <syn cel |l val ue> !

<synonynous i nteger value> <arithnetic operator> <integer value> !
<synonynous i nteger val ue> <l ogi cal operator> <integer val ue>
<synonynous i nteger val ue> <shift operator> <integer val ue>

<T-cell assignnent> ::= <A-cell designator> := <K-register>
<T-cell designator> := <T-cell val ue>
<T-cel |l assignnent> <logical operator> <T-cell value>
<T-cell declaration> ::= <T-type> <iten> ! <T-cell declaration>, <itenp
<T-cell designator> ::= <T-cell identifier>
<T-cell identifier> (<index> / <integer value expression>) !
<T-cell identifier> (<index>)
<T-cell identifier> ::= <identifier>

<T-cell synonyne ::=
<T-type> <identifier> <synonynous cell >
<T-cell synonyne , <identifier> <synonymous cell>

<T-cell value> ::= <T-cell designator> !
<T-val ue>
<string>
<T-primary> ::= <T-value> ! <T-cell designator>
<T-type> ::= <sinple T-type> ! ARRAY <integer value> <sinple T-type>
<true part> ::= <sinple statenent> ELSE
<unsi gned integer nunber> ::= <digit> !
<unsi gned i nteger nunber> <digit>
<unsi gned |l ong real nunber> ::= <floating-point nunber> L
<unsi gned i nteger nunber> L
<unsi gned real nunber> ::= <floating-point nunmber> !
<unsi gned i nteger nunber> R
<unsi gned short integer nunmber> ::= <unsigned integer number> S
<whi |l e clause> ::= WH LE <conpound condition> DO
<WHI LE statement> ::= <while cl ause> <stat enent >

E-4

